Most - Often - Needed 1950 RADIO DIAGRAMS
 and Servicing Information

Compiled by
M. N. BEITMAN

SUPREME PUBLICATIONS
CHICAGO

Always use this complete Index to find the service data on the radio you are servicing. The various makes of radios are listed in alphabetical order by manufacturer's name. Under each make, models are listed in numerical order at the left of the column while the corresponding page numbers are given on the right.

Admiral Corp. 4RI
4R11
6
4R12
6
6A2
7
6 621
7
6A22 7
6A23 7
6Q1
6Q11
8
6Q12
8
6 Q12
8
6214
8
6S1
6 SIl
6S12
6 W 1 9

6W11 10
6 W12 10
6 YI 11
6118
11
$6 Y 19 \quad 11$
9E1
9E15
9 E16
12-15

9 E17
RC400
Changer
12-15
12-15
12-15
16-23
16-23
Airline
see Montgomery W.
Arvin

$\mathrm{RE}-260$	$97-98$
$\mathrm{RE}-273$	99
$\mathrm{RE}-274$	96
$\mathrm{RE}-278$	100
341 T	96
356 T	99
357 T	99
360 TFM	$97-98$
361 TFM	$97-98$
44 T	100

Buick	
980782	163
980899	164
Cherrolet	
986240	24
986241	24
986388	24
986389	24
Coronado	
05RA1-43-7755A	755A 52
94RAl-43-8510B	510 B 52
94RA1-43-8511B	511 B 52
Crosley Corp.	
10-102E	26
10-103	26
10-104W	26
10-135	28
10-136E	28
10-137	28
10-138	28
10-139	28
10-140	28
10-145M	29
10-307M	30
10-310	27
10-311	27
10-313	27
58XTA	25
58XTW	25
DeWald Radio Mfg.	
D-508	32
D-616	32
C-800	31

Emerson Radio

577	34
579	33
581	35
586	$36-37$
590	38
591	39
594	35
595	35
596	33
599	40
600	41
601	40
602	41
605	$42-43$
613	46
616	41
623	38
636	47
640	48
642	45
645	49
652,	653

$120117 \mathrm{~A} \quad 45$
120122B 50

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Firestone Tire 4-B-31

51
Gamble-Skogmo O5RAI-43-7755A 52 94RAI-43-851OB 52 94RAI-43-8511B52

General Electric 4SJ2Al53

4SJ3Al
53 4SJ4AI 53 64 to 67 61
12355
12455
12555
12954

13154
$135 \quad 55$
13655
$143 \quad 62$
$145 \quad 56$
$165 \quad 57$
186-3A 53
218 58-59
218H 58-59
22660
500 61
501 61
505 to 50961
530 61
$601 \quad 62$
60362
$604 \quad 62$
$650 \quad 57$
Hudson Motor Car 6E89 192
6MH889 192
Montgomery Ward
05WG-1811B
65
05WG-2745B
66
05WG-2752 63
84BR-1517A 67
84HA-1527A 68
84FA-1528A
68
94WG-1059A
69
94WG-2745A 66
1059A
69
$1517 \mathrm{~A} \quad 67$
$1518 \mathrm{~A} \quad 67$
$1527 \mathrm{~A} \quad 68$
1528A 68
1811B 65

Mont. Ward, cont.

2745	66
2748	$63-64$
2749	$63-64$
2751	$63-64$
2752	$63-64$

Motorola, Inc.
5A9B, -M, -S
71
5A9UB, -UM
5Jl, 5 JlU
80
5LI, 5LIU 80
5M1, 5M1U 80
5M2, 5M2U 80
CT9
CTIO
RC-36
49LIIQ
81-90
49L13Q 76
58RIIA to -16A 77
$59 \mathrm{Hll} \quad 78$
$59 \mathrm{HI2I} \quad 78$
$59 \mathrm{LIIQ} \quad 79$
$59 \mathrm{LI} 4 Q \quad 79$
59R11
59R12I
59R13M
59R14E
59R15G
59R16Y
HS -62A
69 LII
69×11
69×12 I
79 FM 21
$79 \times M 21$
$79 \times M 22$
HS-165
HS-167
HS-168
HS-175
HS-178 73
HS-181 75
HS-183 76
HS-184
HS-187
HS-206
HS-223
HS-224
HS-249
HS-250
309
400
409
500

Motorola, cont.

600	95
700	70
Changer	$81-90$

Noblitt-Sparks

$\mathrm{RE}-260$	$97-98$
$\mathrm{RE}-273$	99
$\mathrm{RE}-274$	96
$\mathrm{RE}-278$	100
341 T	96
356 T	99
357 T	99
360 TFM	$97-98$
361 TFM	$97-98$
440 T	100

$\begin{array}{cc}\text { Oldsmobile } & \\ 982544 & 166 \\ 982573 & 166\end{array}$
Philco Corp.

$M-20$	$111-118$
$50-522$,	$-I$
$50-524$	102
$50-526$	102
$50-620$	102
$50-621$	103
$50-920$	101
$50-921$	105
$50-922$	105
$50-925$	105
$50-926$	104
$50-1420$	104
$50-1421$	106
$50-1422$	106
$50-1423$	106
$50-1424$	106
$50-1718$	108
$51-631$	110
$51-934$	109
Changer	$111-118$

Pontiac $984570 \quad 165$
R.C.A. Victor

BX6	
7 7Q51X	119
8B41	120
8B42	122
8B43	122
8BX5	122
8BX54	121
8BX55	121
9BX5	121
9BX56	121
9EY3	123

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

R.C.A. (continued)

$9 E Y 31$	127
9EY32	127
9EY35	127
9EY36	127
9W106	131-132
9×561	124
9×562	124
9×571	125
9×572	125
9X641	125
9X642	125
9X651	126
9X652	126
$9 Y 7$	128
9Y51	129
BX55	130
A106	131-132
RS-132	127
RP-168	133-144
RC-622	131-132
RC-1055D	120
$\mathrm{RC}-1057 \mathrm{~B}$	128
RC-1059A	121
RC-1059B,	-C 121
RC-1068	123
RC-1069,	A, -B 122
RC-1077	129
RC-1079,	-A. 125
RC-1079B,	-C 124
RC-1080,	-A 125
RC-1082	119
RC-1085,	-A 126
RC-1088	130
Changer	133-144

Sears, Roebuck 1 147

2	147
18	$145-146$
20	$145-146$
9022	145
9073	148
9105	145
132.871	145
132.875	145
132.877	$145-146$
132.878	147
$135-244$	148

Sentinel Radio

$1 \mathrm{U}-312 P G$	149
$1 \mathrm{U}-312 \mathrm{PW}$	149
$10-335 \mathrm{PG}$	154
$1 \mathrm{U}-335 \mathrm{PI}$	154
$10-335 \mathrm{PM}$	154
$1 \mathrm{U}-335 \mathrm{PW}$	154

1U-335PW 154
132.877 145-146
$\begin{array}{ll}132.878 & 147 \\ 135-244 & 148\end{array}$

Sentinel (continued)

$1 \mathrm{U}-339-\mathrm{K}$	155
312 PG	149
312 PW	149
$331-\mathrm{I},-\mathrm{R},-\mathrm{W}$	150
$332-\mathrm{I},-\mathrm{W}$	151
$333-\mathrm{I},-\mathrm{W}$	$152-153$
335 PG	154
335 PI	154
335 PM	154
335 PW	154
$339-\mathrm{K}$	155

Silvertone see Sears, Roebuck

Sonora Radio 299 156 300 156 306 156

Stewart-Warner 9151-A 157-159 9152-A, -B, - C 160

Stromberg-Carlson 1500

161
Trav-ler Radio 5015 162 $5044 \quad 162$

Truetone
see Western Auto

United Motors $\begin{array}{ll}980782 & 163 \\ 980899 & 164 \\ 982544 & 166 \\ 982573 & 166 \\ 984570 & 165\end{array}$ 167 5D127 167 25D26-002 168 25D26-006 168 26A94-852 169 227A96-906 170 D-1946 169 D-2002 167 D-2003 167 D-2004 167 D-2017 D-2018 168 D-2027A
10-339-K 155

United Motors	
980782	163
980899	164
982544	166
982573	166
984570	165

Western Auto 4B115

Westinghouse Elect.

H-198	171
H-199	172
H-210	173
H-211	173
H-300T5	175
H-30175	175
H-302P5	174
H-303P4	176
H-304P4	176
H-305C8	177-178
H-306C8	177-178
H-310T5, -U	U 179
H-31175, -	- 179
H-312P4, -U	U 180
H-313P4, -U	- 180
V-2137-1	172
V-2137-2	171
V-2137-4	177-178
V-2144	173
V-2144-1	173
V-2148	175
V-2151-1	174
V-2153	176
V-2153-1	180
V-2161, -U	179

Zenith Radio Corp.

5GO1	181
5GO2	181
5GO3	182
$5 G 41$	183
$6 E 89$	192
$6 G 01$	184
$6 G O 5$	185
$6 M H 889$	192
$7 F 01$	188
7FO2	$186-187$
7FO4	$186-187$
$7 G 01$	188
$7 G 02$	189
$7 H-921$	$186-187$
7H-922	$186-187$
$8 G 20$	$190-191$
$8 G 21$	$190-191$
G503	183
G510	181
G511	181
G516	182
G615	185
G660	184
G663	184
G665	184
G724	189
G725	188
G844	$190-191$
G881	to
G885	190

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS Admiral

CHASSIS 4R1 MODELS 4R11, 4R12

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ALIGNMENT PROCEDURE

Turn receiver volume control full on.
Use an isolation transformer if available, otherwise connect a .1 mfd . condenser in series with low side of signal generator and connect to B minus (terminal of On-Off switch).
Connect output meter across speaker voice coil.
Use lowest output setting of signal generator capable of producing adequate output meter indication and then proceed as outlined in chart below.
Repeat adjustments to insure good results.
Use a non-metallic alignment tool for IF transformers.

TUBE AND TRIMMER LOCATION

Adjustments B and D are made from underside of chassis.

Step	Dummy Anntenna in Series with Signal Generator	Connection of Signal Generator (High Side)	Signal Generator Frequency	Receiver Gang Setting	Trimmer Description	Trimmer Designation	Type of Adjusfment
1	250 mmfd . condenser	Pin 8 of 12SA7 tube	455 KC	Gang fully open	$\begin{gathered} \text { 2nd } \\ \text { 1st } \\ \text { IF } \end{gathered}$	$\begin{aligned} & \mathrm{A}, * \mathrm{~B} \\ & \mathrm{C},{ }^{*} \mathrm{D} \end{aligned}$	Maximum Output
2	250 mmfd . condenser	Tuning condenser Antenna stator	1620 KC	"	Oscillator (on gang)	E	"
3	Loop of several turns of wire (or place generator lead close to receiver loop for adequate signal)	No physical connection (signal by radiation)	1400 KC	Tune in Generator signal	$\begin{gathered} \text { RF } \\ \text { (on gang) } \end{gathered}$	F	"
4	"	"	"	"	Antenna (on gang)	G	"

*Adjustments B and D are made from underside of chassis.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

EARIY RATIO DETECTOR W

NOTE: POINT 'Y. IS GROUNDE IS
EARLY CIRCUIT. NEGATIVE OF C25

RESISTORS	
R1	1 megohm, 1/2 watt..................603 8-105
R2	100 ohms, $1 / 2$ watt..............-608 8-101
R3	1000 ohms, $1 / 2$ watt.......-...-608 8-102
R4	22,000 ohms, $1 / 2$ watt..............-.-.-603 8-223
R5	470 ohms, $1 / 2$ watt.-..................60B 8-471
R6	
R7	
R8	1 megohm, $1 / 2$ watt.......................608 8-105
R9	1 megohm, $1 / 2$ watt....................608 8-105
RIO	
R11	1000 ohms, $1 / 2$ watt
R12	1000 ohms, $1 / 2$ watt
R13	
R14	1000 ohms, $1 / 2$ watt.__-..........-60B 8-102
R15	47,000 ohms, $1 / 4$ watt
R16	470,000 ohms, $1 / 2$ watt._____COB 8-474
$\mathrm{R17}$	390 ohms, $1 / 2 \mathrm{watt}$
Ri8	15.000 ohms, $5 \%, 1 / 2$ wctt
R19	15,000 ohms, 5%, $1 / 2$ watt $-\ldots60 B ~ 7-153$
R20	27.000 ohms, $1 / 2$ watt \quad - \quad 60B 8-273
R21	47 ohms, 1 watt.-.....-.....-...-...----60B 14-470
R22	
R23	18,000 ohms, $1 / 2$ watt.
R24	1 megohm Volume Control (tapped at 500,000 ohms). 75B 2-14
R25	
*R26	500,000 ohms, $1 / 4$ watt
- 227	500,000 ohms, $1 / 4$ watt
R28	150 ohms, 1 watt .a.c.an 14.151

CONDENSERS

Cla 485.8 mmfd (max) AM RF
Cib 15 mmfd , (max) FM RF \qquad
\qquad Gan Gang
$8 B 27$ $\left.\begin{array}{l}15 \mathrm{mmfd} \text { (max) FM Osc. } \\ 142.6 \mathrm{mmfd}, \text { (max) AM Osc. }\end{array}\right\}$ (Dial drum welded to gang) $\begin{array}{ll}\mathrm{C} 2 & .01 \\ \mathrm{C} 3 & .001\end{array}$ \qquad
 001 mfd , "Hi-R" Ceramic
3 to 12 mmfd , trimmer, Silver 35 Ceramic ..66A 19-2
C9 35 mmfd, Zero Temp. Coeff., \quad Ceranic 6 ..
C10 50 mmfd . Ceramic. $\begin{array}{ll}.65 B & 6.57 \\ .65 B & 6.4\end{array}$
C11 2 mmid Te $\pm .25 \mathrm{mmfd},-.00075$
65B 6.4

C13 .005 mfd min. Ceramic.

**C21 100 mmfd min. Cercumic 65A $10-3$

C23 100 mmfd , Cercmic
$\left.\begin{array}{ll}\text { C23 } & 100 \mathrm{mmfd} 10 \% \\ \text { C24 } \\ 100 \mathrm{mmfd} & 10 \%\end{array}\right\}$ Duai Ceramic....63A 7-1

$\left.\begin{array}{l}\text { C3Ib } 30 \mathrm{mfd}, 150 \\ \text { C3Ic } 20 \mathrm{mfd}, \\ 25 \\ \text { volts }\end{array}\right\}$ Elect..___-_67C $7-14$

C35 .005 mfd, Ceramic
C36 . $002 \mathrm{mfd}, 600$ volts, Paper. \qquad 64 B 1-14 $\mathrm{mfd}, 400$ volts, Paper.
(C37 used only in sets with 64
model numbers ending in "UL")

model numbers ending in "UL".)

COILS, TRANSFORMERS, ETC.

L1	Antenncs, Loop (AM) __-........_-669C 97
L2	Coil, Antenna (FM) --6.-.-.-69A 103
13	Coil, Line Cord (FM antenna)..-69A 102
14	
L5	Coil, RF Choke........................73A 6.2
L6	
17	Coil, Oscillator (FM) --men-........69A 104
18	Coil, Oscillator (AM)
1.9	Choke, Filter (2.5 Henry) .-.....74A $15-2$
T1	Transformer, 1st IF (FM) --72B 89
T2	Transformer, 2nd IF (FM) _-...._72B 90
T3	Transformer, 1st IF (AM) --.-72B 91
T4	Transformer, Ratio Detector.._-_72B 39
T5	Transformer, 2nd IF (AM) -- $72 \mathrm{B4}$
T6	Transformer, Speaker Output - 98 A 4
MI	Speaker and Output Transformer

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS Almuial

VOLTAGEDATA

TUBE AND TRIMMER LOCATION

- All readings made between tube socket terminals and B minus (terminal of On-Off switch).
- Range Switch in "Radio" position.
- Measured on 117 Volt AC line.
- Volume control minimum; dial turned to low end.
- Voltages measured with Vacuum Tube Voltmeter.

"If taken with a 1000 ohm-per-volt meter, readings will be either lower or practically zero. A.On "Phono" these voltager will be zero. All other DC readings may be slightly highor.

Stop	Dummy Antenna in Series with Signal Generator	Connection of Signal Generator (High Sido)	Signal Generator Frequency	Receiver Gang Sotting	Trimmer Description	Trimmer Dosignation	Type of Adjustment
1	250 mmfd . condenser	Tuning condenser, antenna stator	455 KC	$\begin{aligned} & \text { Gang } \\ & \text { fully } \\ & \text { open } \end{aligned}$	$\begin{aligned} & \text { 2nd IF } \\ & \text { lst } \mathrm{IF} \end{aligned}$	$\begin{aligned} & * \\ & { }^{*} \mathrm{~A}, \mathrm{~B}, \mathrm{~B} \\ & \hline \end{aligned}$	Maximum output
2	250 mmfd . condenser	Tuning condenser, antenna stator	1620 KC	$\begin{aligned} & \text { Gang } \\ & \text { fully } \\ & \text { open } \end{aligned}$	Oscillator	E	Maximum output
Mount dial pointer. Set pointer to horizontal position with tuning condenser tuned to 1400 KC generator signal (see illustration below). Rotate the tuning condenser until the pointer is in a vertical position (900 KC), then slip chassis in cabinet, carefully guiding the pointer so that it locates between the dial escutcheon and the cabinet. Install antenna and chassis mounting bolts. The pointer and escutcheon may be mounted after installing the chassis in cabinet as follows: Set pointer to horizontal position with gang tuned to 1400 KC signal. Place escutcheon on cabinet. With long nose pliers slip the hairpin ends of the escutcheon mounting springs in holes of escutcheon tabs.							
3	Loop of several turns of wire, or place generator lead close to receiver antenna for adequate signal.	No actual connection (signal by radiation)	1400 KC	Tune in generator signal	Antenna	$\dagger \mathrm{F}$	Maximum output

*Adjustments A and C made from the underside of the chassis. If IF transformers have hollow core slugs, these adjustments may all be made from the top of chassis, if you use alignment tool \#98A30-7 obtainable from your Admiral distrihutor. The bottom IF slug adjustment may be reached through the hollow core in the upper slug.
\dagger Antenna Trimmer " F " should be aligned after chassis and antenna are mounted in cabinet.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RESISTORS		
Symbol	Description	Part No.
R1	470,000 Ohms, 1/4 Watt	60B 2-474
R2	1,000 Ohms, 1/4 Waft.	60B $2-102$
R3	22,000 Ohms, $1 / 4 \mathrm{Watt}$.	60B 2-223
R4	470 Ohms, 1/4 Watt	60B 2-471
H5	470,000 Ohms, 1/4 Watt..	60B $2-474$
R6	1,000 Ohms, $1 / 4 \mathrm{Wctt}$...	60B 2-102
¢R7	47,000 Ohms, 1/4 Watt	
R8	220,000 Ohms, $1 / 4 \mathrm{Watt}$.	60B 2 2-224
R9	1,000 Ohms, 1/4 Wctt...	60B 2-102
H10	390 Ohms, $1 / 4 \mathrm{Watt}$.60B $2-391$
H11	27,000 Ohms, $1 / 4 \mathrm{Watt..}$.	60B 2.273
H12	6,800 Ohms, $1 / 4 \mathrm{Wctt}$, $5 \% . .$.	60B 1-682
R13	6,800 Ohms, $1 / 4 \mathrm{Wctt}$, 5\%	60B 1-682
R15	33 Ohms, 1 Watt. ..	60B 14-330
H16	47 Ohms, 1 Watt	60B 14-470
H17	27,000 Ohms, $1 / 4 \mathrm{Watt}$.	60 B 2-273
R18	2 Megohms Tone Control and ON-OFF Switch SWI.	75B 1-12
R19	1 Megohm Volume Control (Tapped at 500,000 Ohms)	75B 2-12
R20	4.7 Megohms, 1/4 Watt...	60B 3.475
R21	1.8 Megohms, 1/4 Watt..	60B 3-185
R22	470,000 Ohms, 1/4 Wctt.	60B $2-474$
R23	47,000 Ohms, $1 / 4 \mathrm{Wctt}$.	60B $2-473$
R24	470.000 Ohms , 1/4 Watt.	60B $2-474$
H25	150 Ohms, $1 / 2 \mathrm{Wctt}$.	60B 8-151
\% H 26	$150,000 \mathrm{Ohms}, 1 / 2 \mathrm{Watt} \ldots$	$60 \mathrm{~B} \quad 2-154$
R27	10 Ohms, 1/4 Wett	60 B 2-100

CONDENSERS

COILS, TRANSFORMERS, ETC.

	Antenng, Loop (AM) -.....69B 73
I. 2	Coil, AF (FM).. 69A 68
L3	Coil, Oscillator (FM) 69 A 69
L. 4	Coil, Oscillator (AM). 69A 20
L5	Choke, Cathode RF.. AA139-5
L6	Choke, Heater RF. 73A 2-3
L7	Choke, Heater RF.. .. 73A 2
L8	Choke, Filter. 74A 15-2
L9	Coil, If Trap Approx. 5 turns (18") of solid No. 22 hook-up wire wound on C39. Solder one end to inside foil lead of C39.
10	Antenna, Built in FM. ... AB155
Filter Unit 63A3-1. This unit consists of R7, If a section of the unit becomes defective, it component of proper value. s with model numbers ending in "UL".	

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

REPLACEMENT OF BATTERY PACK

Replace A-B battery pack with Ensign type AB50 pack, Ray-O Vac AB994, General 60A-6F6-5, Burgess F6A60 or other equivalent.
Electrical characteristics of the recommended battery packs provide for equal life for both the A and B sections. The A section may give satisfactory performance as low as 6.6 voits, the B section as low as 60 volts. Replace battery pack when reception is weak and voltage has dropped below values given above.
To install a replacement battery pack, merely open the back of the cabinet, pull out the battery plug and slide out the run down battery pack.
Slip a new battery pack into place, plug in the battery plug.

- Voltage readings taken between tube socket terminals and B minus (inetal shell of electrolytic condenser), unless otherwise shown
- Dial set to low frequency; no signal, and volume control minimum.
- Measurements made from 117 volts AC line. If measured from DC line, voltages may be slightly lower.
- Voltage readings taken with a vacuun tube voltmeter. Socket terninals marked with an asterisk * indicate much lower voltage or zero voltage if measured with a 1000 ohm-per-volt meter.
- If measurements are made on battery operation, tube filament and B plus voltages will vary with the condition of the batteries. These voltages will equal the terminal voltage of the A or B hathery less the voltage diop through components.

Admuial
CHASSIS 6Y1 MODEL 6Y18, 6 Y19

TUBE AND TRIMMER LOCATION

VOLTAGEDATA

- If laken with a 1000 ohm-per-voll meter, recdings will be lower or zero

RESISTORS

Sym	Description Pa	Part No.
RI	2.2 Megohms, $1 / 2$ Watt. 60B	8-225
R2	27,000 Ohms, $1 / 2$ Watt.............603	8-273
R3	1 Megohm, $1 / 2 \mathrm{Watt}$................60B	8.105
R4	100,000 Ohms, 1/2 Watt-...........603	8-104
H5	8,200 Ohms, $1 / 2 \mathrm{Watt}$......603	8.822
H6	3.3 Megohms, 1/2 Watt608	8-335
R7	10 Megohms, 1/2 Watt608	8.106
H8	1 Megohm, Volume Control and On.Off Switch.........................75B	1-2
R9	4.7 Megohms, 1/2 Watt........ 608	8-475
R10	470,000 Ohms, $1 / 2$ Watt......... 608	8-474
R11	2.2 Megohms, 1/2 Watt............60B	8-225
R12	5.6 Megohms, $1 / 2$ Watt......... ..60B	8.565
R13	47 Ohms, 1 Watt. . -60B	$14-470$
R14	2,700 Ohms, 1 Watl60B	
R15	2,400 Ohms, 2.5 Watt Center-tapped Candohm......61月	5.3
R16	1.500 Ohms, $1 / 2$ Watt608	8-152
R17	820 Ohms, $1 / 2$ Watt $\ldots \ldots \ldots608 ~$	8.821
R18	220 Ohms, $1 / 2$ Watt $\ldots608 ~$	8-221

CONDENSERS

Cl	250 mmfd ., Ceramic65B 6-5
C 2 a	Gang, 420.0 mmfd. (max.) Ant. Section
C 2 b	$\left.\begin{array}{l}\text { Gang, } 193.8 \text { mmfd. (max.) } \\ \text { RF Section }\end{array}\right\} \ldots68 B 10$
C 2 c	Gang, 90.0 mmfd . (max.) Osc. Section
C3	105 mmfd . Ceramic......65B
C 4	250 mmfd., Ceramic 658
C5	$105 \mathrm{mmfd}$. Ceramic. 65B
C6	. 05 mfd., 200 Volts. Paper...........64B 1.32
C7	. 001 mid. min., Ceramic653 6.41
C8	. 005 mfd , 600 Volts, Paper.........64B 1-12
C9	. 05 mid., 200 Volts, Paper..64B 1-32
C10	105 mmfd , Ceramic.... .- 658 6-9
Cll	. 005 mfd ., 600 Volts, Paper.........648 1-12
Cl 2	.001 mid. min., Ceramic 65B 6-41
Cl3	250 mmfd., Ceramic 658 6-5
C14a	30 mfd .150 Volts
C14b	40 mid .150 Volts $\}$ Elect... ... 67C 7-5
Cl 4 c	20 mfd., 150 Volts

C15 .18 mfd., 200 Volts, Paper..........64A 2-2 Note: In sets, with model numbers Cl6 ending in 05 mfd 400 'Volts, Paper..........64B $1-22$

COILS, TRANSFORMERS, ETC

L1	Antenna, Loop.(Part of Cabinet)
L. 2	Coil, RF69B 58
\underline{L}	Coil, Oscillator69A 57
L4	Coil, Antenna Loading69A 45.1
T1	Transformer, 1st 1F.... 72855
T2	Transformer, 2nd IF..72B 56
T3	Transformer, Output 98 A 21
M1	Speaker (${ }^{\prime \prime}$ 'x6' PM) and
	Output Transformer78B 38-1
M2	Rectifier, Selenium93A 1-4
SWl	Switch, Power Change
	DPDT, for ' N "' models.....77A 19.2
	4 PDT , for "UL'" models.......... 77 A 19-1
SW2	Switeh, On-Off (DPST) (Part of R8)

Any standard brand vacuum tube voltmeter with a DC scale of not over 5 volts is suitable. A 3 -volt zero center scale is desirable. A signal generator with a frequency range up to 110 MC. is desirable. It is possible however, to align the receiver with a signal generator going to 20 or 30 megacycles, by using the harmonics

Data on alignment of these models is continued on page 13, the schematic is on page 14, and the parts list and other facts are on page 15.

AM ALIGNMENT PROCEDURE

- Use regular output meter connected across speaker voice coil.
- AM loop antenna must be connected and placed in the same relative position to the chassis as when in cabinet.
- Turn receiver Volume Control full on; Tone Control full treble.
- Use lowest output setting of signal generator that gives a satisfactory reading on meter.

\mid Step $|$| Connect |
| :---: |
| Signal |
| Generator |

Dummy Antenna	Signal Between Radio and Signal Generator
Frequency	

Receiver
Dial
Setting
Adj. Trimmers
in Following
Order to Max.

Set Band Switch to Broadcast Position (center) and be sure to follow instructions under heading "Important Preliminary Alignment Steps." Loop antenna must be connected.

AM antenna trimmer adjustment " F " in step 3 should be repeated after set and antenna have been installed in cabinet. Important: AM antenna trimmer may not peak properly if antenna leads are not routed properly or
separated as originally made.

SETTING SIGNAL GENERATOR TO CENTER OF I.F. SELECTIVITY CURVE

CAUTION: Due to the difficulty of setting a signal generator to the accuracy required by this operation, extreme care must be exercised in making each setting. Otherwise, improper alignment of the ratio dectector and consequent audio distortion will result.
EXAMPLE: (See Figures 4 and 5)
Voltage reading in Step 4a is +1.5 volts.
Generator frequency on low side of 10.7 MC for a reading of +1 volt $\mathrm{DC}=10.640 \mathrm{MC}$.
Generator frequency on high side of 10.7 MC for a reading of +1 volt $\mathrm{DC}=10.800 \mathrm{MC}$.
 Center frequency is obtained by adding 10.640 and 10.800 , then dividing by 2 . For these readings it will be 10.72 MC .
Set generator frequency to 10.72 MC as this is center of selectivity curve as shown in Figure 5.
Note: Numerical vernier dial readings may be used instead of MC.

Fig. 10 Bottom Irimmer Locotion

Fig. 11. Top Trimmer Location

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

 Allminal
FM I.F. AND RATIO DETECTOR ALIGNMENT

- Keep output indicator leads well separated from signal generator leads and chassis wiring.
- Band switch in FM position (fully to the right).
- While peaking IF's, keep reducing signal generator output so VTVM reading is approximately +1.5 volts DC with exception of Step \#5.
- To avoid splitting the slotted head of iron core tuning slugs in the IF transformers, use an insulated alignment tool with a $1 / 8^{\prime \prime}$ wide screwdriver blade. Do not exert undue pressure as threads of slugs may strip.
- Speaker must be connected during alignment.
- FM antenna disconnected during alignment.

	Connect Signal Generator	Generator Frequency	Receiver Dial Setting	Output Indicator and Special Connections	(Adjust as Follows very carefully)
1	Thru . 001 cond. to pin \#1 of 6BA6 2 nd IF. (Ground to chassis, close to tube.)	$\begin{gathered} 10.7 \mathrm{MC} \\ \text { unmodu- } \\ \text { lated. } \end{gathered}$	Tuning gang wide open	Connect VTVM (DC probe) from point "W" to chassis. (See Fig. 10)	"G" (ratio detector primary) for maximum reading on VTVM
2	**Thru .001 cond. to pin \# 1 of 6BA6 1st IF. (Ground to chassis, close to tube).	"	"	" "	" H " and "I" (2nd IF trans.) for maximum reading on VTVM.
3	Across ends of FM antenna twin lead	"	"	"	"J" and "K" (1st IF trans.) for maximum on VTVM. Readjust G, H, I, J, K, for maximum. (Keep reducing generator output to keep VTVM at 1.5 volts)
4	"	a. Reduce output of signal generator until VTVM reads EXACTLY $+\mathbf{1 . 5}$ volts DC. b. Tune generator frequency above 10.7 MC until VTVM reads EXACTLY +1.0 volt. Note EXACT generator frequency. Extreme care in reading this is essential. c. Tune generator frequency below 10.7 MC until VTVM reads EXACTLY +1.0 volt. Note EXACT generator frequency. Extreme care in reading this is essential. d. Add generator frequency in step c to generator frequency in step b and divide by 2. The result is the center frequency of the IF curve to be used in step 5 . See example under heading "Setting Signal Generator to Center of I.F. Selectivity Curve". e. Tune generator frequency above and below 10.7 MC and note voltage reading on VTVM at different frequency points until you have a good impression of the shape of the selectivity curve. If you have two peaks as in Figures 7 or 8, note readings (voltage) of both peaks. If one peak is over 20% higher than the other one, it will be necessary to realign IF's. A selectivity curve that would require realignment is illustrated by Figure 9.			
5	"	Center of IF selectivity curve per step 4d above.	Tuning gang wide open	Connect VTVM (DC probe) from point " X " to chassis. (See Fig. 10.)	"L" (ratio detector secondary) for zero voltage reading on VTVM. (The correct zero point is located between a positive and a negative maximum.)
If any adjustments were very far off, it is desirable to repeat steps 3,4 and 5.					

FM RF ALIGNMENT PROCEDURE

Step	Connect Generator	Generator Frequency	Receiver Gang or Dial Setting	Output Connections	Adjust as follows (very carefully)
1	To ends of FM antenna twin lead thru 120 ohm carbon resistors in series with each generator lead.	$\dagger 109$ MC (unmodu- lated)	Gang fully open	Connect VTVM (DC probe) from point "W" to chassis.	*M (oscillator) and N (antenna) for maximum
2		$\begin{aligned} & 87 \text { MC } \\ & \text { (unmodu- } \\ & \text { lated) } \end{aligned}$	Tune in Signal. (Gang should be closed or almost closed.)	"	If signals in steps 1 and 2 will not tune in at gang tuning extreme ($\pm 0.5 \mathrm{MC}$), it will be necessary to spread or squeeze oscillator coil turns and then repeat steps 1 and 2 until correct results are obtained.
3		106 MC (unmodulated)	Tune in Signal	"	Readjust N for maximum VTVM reading, while rocking gang. If trimmer does not peak, it will be necessary to squeeze or spread turns of FM antenna coil. Check calibration and tracking at 90 MC . Calibration error should not exceed $\pm 0.5 \mathrm{MC}$. If necessary, repeat steps $1,2,3$ until correct results are obtained.

* It is advisable to adjust generator output so VTVM readings do not exceed approximatelv +1.5 V . DC while peaking. \dagger If your signal generator does not reach this frequency, use harmonics

POINTER SETTING

With the gang open, the pointer should be at the position as shown in the stringing diagram, that is, the end of the pointer should line up with the "AM" lettering on the dial scale. If the pointer is in a different position, move it by hand while keeping the gang open.

VOLTAGE CHART

Line Voltage 117.
Voltage readings taken with a vacuum tube voltmeter. Socket terminals marked with an asterisk * indicate much lower voltage or zero voltage if measured with a 1000 ohm-per-volt meter.

Voltages read between socket terminals and ground, unless otherwise indicated.
Band switch in FM position.
Dial turned to low frequency end. Volume Control-minimum.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Admiual

RC400 RECORD CHANGER

The exploded view of this changer is shown on page 16, and the parts are listed and described below. Adjustment and repair instructions are given below and continued to page 23.

OPERATING INSTRUCTIONS

SELECTING CENTERPOST

To play 45 RPM records, insert the large diameter (plastic) centerpost (2) into the hole in the center of the turntable (38). While holding the turntable with one hand, turn the centerpost counter-clockwise until the lock-in-lugs fall into and lock in the three slots in the turntable. To remove this centerpost, hold the turntable with one hand and turn the centerpost clockwise; then lift it up.

Figure 1. RC400 Record Chonger (Top View).
To play 33 RPM records, insert the small diameter (metal) centerpost (1) into the center of the turntable and press it down until it "locks" in place. To remove this centerpost, merely lift it straight up and out.

SETTING SPEED CHANGE KNOB

To play 45 RPM records, set the Speed Change Knob (19) so that its indicating arrow points to "45".

Admiral RC400 Changer, continued

To play 33 RPM records, set this knob so its indicating arrow points to " 33 ". When moving this knob to either position, make sure that the knob "clicks" into position.
This control also has a center ("neutral") position for disengaging the rubber-tired idler wheel (47). The changer pan is not marked "neutral" but the position can be felt when the Speed Change Knob is halfway between " 33 " and " 45 ". In this position. the compound idler wheel is not in contact with the drive shaft or the turntable. When the record changer is not going to be used for some time, set the speed change knob in the center position.

LOADING AND STARTING THE RECORD CHANGER

To load 45 RPM records, place as many as ten over the 45 RPM centerpost so that the bottom record rests on the record supports (8). To load 33 RPM records, place as many as ten over the 33 RPM centerpost so that the bottom record rests on the ledge on the centerpost (1) and the 33 RPM record support (17). Start the changer by turning the Radio-Phono switch on the radio to the "Phono-On" position.

STOPPING AND UNLOADING

Turn changer off by turning Radio-Phono switch on the radio to "Phono-Off" position. Do not turn changer off during change cycle. To unload, merely lift records straight up.

THE CHANGE CYCLE

45 RPM OPERATION (See Figures 2, 3 and 4)

If at all possible, we recommend that you carefully observe the operation of a changer that is in normal operating condition. It is a good idea to rotate the turntable by hand and repeat the change cycle until you understand the function of each part.

The changer operates as follows: The turntable (38) is driven by the smaller of the two rubber tires on the compound idler wheel (47), riding against the outer rim of the turntable.

The speed of the turntable is determined by the setting of the speed change knob (19). When the knob is in the " 45 " position, the larger rubber tire on the compound idler wheel (47) rides against the 45 RPM section (larger diameter) of the motor drive shaft. When the knob is moved to " 33 ", the compound idler

Figure 2. Compound Idler Wheel ond Motor Drive Shaft.
wheel moves so that the larger tire rides against the 33 RPM section (smaller diameter) of the motor drive shaft. See Figure 2.

The changer mechanism is driven through change cycle by the knurled hub of the turntable rotating the rubber tired drive wheel (36). During normal playing, the drive wheel does not touch the knurled hub of the turntable. See Figure 3A. As the needle enters the record spiral grooves and moves towards the centerpost, the pickup arm lever and stud (72) moves simultaneously and rotates the trip bracket (61) counterclockwise. Since the trip bracket and drive wheel are on the same shaft, the drive wheel is pivoted approximately 10 degrees counter-clockwise. The rubber tire contacts the knurled hub of the turntable, and is rotated in a counter-clockwise direction. See Figure 3B.

The drive wheel shaft is fitted through the drive bracket (78) and is mounted OFF CENTER on the drive wheel (36). Due to the cam action of the "offcenter" drive wheel (36), rotation of the drive wheel, by the knurled hub of the turntable, forces the drive shaft out. Since the drive shaft is fitted through the drive bracket (78), the drive bracket is pivoted around the drive bracket hub. The cycle spring (76) maintains pressure on the drive bracket so that the drive wheel tire is kept in contact with the knurled hub. After the changer has been tripped and the drive bracket begins to be pivoted by the movement of the drive wheel, the arm lift incline (78A) on the drive bracket moves across the lift rod moving it upward. This lifts the pickup arm off of the record. Stud (78C) on the drive bracket now contacts the pickup arm lever and begins to move it so the pickup arm moves out from the center of the record.
At about this time, the push-off adjusting shaft (15) on the 45 RPM centerpost (2) starts moving up the push-off incline (78B) on the drive bracket (78). See figure 12. This causes the push-off shaft to move up into the centerpost. As the push-off shaft moves into the centerpost. As the push-off shaft moves into the centerpost, the slicers (5 and 6) ride on the incline of the slicer cam and consequently move out of the centerpost. The record supports (8) are also brought into the centerpost as each slicer is hooked to the record support on the opposite side of the centerpost.

As the drive bracket continues to pivot, the pickup arm continues to move away from the record, the slicers (5 and 6) continue to come out, and the record supports continue to pull in. When the pickup arm has moved to the right almost as far as it will go, the record supports (8) have pulled into the centerpost enough to drop the bottom record to the turntable and the slicers are out far enough to hold up the remainder of the stack of records.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

The pickup arm lever control stud (72A) riding against the indexing edge of the index bracket (65) controls the movement of the pickup arm. The index bracket (65) and set down spring (64) prevent the pickup arm from moving out too far. (Later in the change cycle the index bracket (65) and set-down spring (64) control the set-down point.)

At this point, the drive wheel (36) has gone through one-half of its rotation and as the drive wheel continues to rotate, the drive bracket (78) will begin to return to its normal (out of change cycle) position.

The set-down spring (64) keeps the pickup arm lever (72) in contact with the arm control stud (78C) on the drive bracket. Therefore as the drive bracket moves back toward its normal position, the pickup arm is moved in toward the set-down point. When the pickup arm lever stud (72A) has reached the indexing point (notch) in the index bracket, the pickup arm has reached the set-down point and stops moving in toward the centerpost. At this time, the drive bracket has pivoted to a point where the lift rod (32) starts moving down the arm lift incline (78A) in the drive bracket and the pickup arm starts moving down toward the record. When the arm has moved down about halfway, the second stud on the drive bracket (78D) moves the index bracket (65) away from the stud on the pickup arm lever so that the pickup arm is free to travel in on the lead in grooves on the record.

Almost simultaneously, the push-off adjusting shaft (15) is riding down the push-off incline (78B) on the drive bracket. This allows the push-off return spring (11) on the centerpost to pull the cam and shaft assembly (9) down.

The record supports are forced out of the centerpost by their return spring (7) and the slicers are moved into the centerpost by the slicer return springs (4). When the slicers are all the way in, the stack drops to the record supports (8).

Admiral RC400 Changer, continued

The drive wheel is no longer in contact with the knurled hub but it is rotated approximately 20 degrees further by the drive wheel bracket, which is held against the knurled hub of the turntable by the drive wheel bracket spring (35).

When the drive wheel bracket has rotated past the knurled hub, the drive wheel must be rotated another 10 degrees by the trip bracket (61), or reject lever (43), before it will contact the knurled hub and begin the change cycle. When the reject knob (42) is moved to the "Rej" position, the reject lever roller rotates the drive wheel the necessary 10 degrees and the change cycle begins.

33 RPM OPERATION

The change cycle for 33 RPM operation is exactly the same as for 45 RPM operation, except for change cycle time and the fact that 33 RPM records are supported by the offset on the 33 RPM centerpost and the 33 RPM record support (17), and are pushed off by the push-off plate (16).
When the drive bracket (78) has pivoted to the point where the pickup arm is clear of the record, the stud (80A) on the push-off bracket (80) is moved by the slot (78 E) in the drive bracket. This movement causes the push-off plate (16) to pivot and push-off the bottom record. The remainder of the records are held back by the small sliding piece at the top of the centerpost. When the drive bracket pivots back to its normal playing position, the push-off bracket stud (80A) follows the slot in the drive bracket and causes the push-off plate to pivot back to its normal position. Then the record stack drops to the record support (17) from the push-off plate (16).

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Admiral RC400 Changer, continued
 ADJUSTMENTS

TRIP ADJUSTMENT

This record changer employs the position type trip; that is, it trips into change cycle when the needle in the pickup arm reaches a given distance from the center of the record. If the trip is properly adjusted, the record changer will trip into change cycle when the needle is between $2^{\prime \prime}$ to $2-3 / 16^{\prime \prime}$ from the center of the hole in the turntable or approximately half way in on the spiral groove in the center of the record.

If the record changer does not trip at the proper position, it will be necessary to adjust the trip adjusting screw (75). See figure 4. Turning this screw in (clockwise) moves the trip point away from the centerpost. Turning it out, moves the trip point nearer to the centerpost.

If the screw is turned all the way out, the changer may not trip. If it is turned in too far, the changer may trip before the record finishes playing.

33 RPM PUSH-OFF ADJUSTMENT (See Figures 1 and 4)

If 33 RPM records do not drop to the turntable during change cycle, it may be necessary to correct the push-off adjustment.

The push-off is properly adjusted when the leading edge of the push-off plate (16) extends to a maximum of $1 / 32^{\prime \prime}$ beyond the edge of the record support (17) during change cycle.

To make this adjustment, proceed as follows:

1. With the record changer in cliange cycle, rotate the turntable by hand until the pickup arm STOPS moving away from the centerpost.
2. Loosen the set screw (81) on the push-off bracket (80) and move the push-off plate (16) so that its leading edge extends $1 / 32^{\prime \prime}$ beyond the edge of the record support (17). Then tighten the set screw (81).
3. Load the record changer with 33 RPM records, place the changer in operation and keep rejecting records until the stack has been dropped to the turntable.
4. If records still do not drop properly, repeat steps 1 through 3.

ADJUSTMENT OF SET-DOWN POINT

(See Figures 4 and 5)

This record changer does not have a conventional set-down screw adjustment. The pickup arm should set-down properly unless the Allen set screw (34) on the pivot collar (33) is loosened, or excessive pressure has been applied to the pickup arm.

When properly adjusted for correct set-down, the needle point will set-down between $2-9 / 16^{\prime \prime}$ ' and 2-10/16" from the near side of the 45 RPM centerpost. (Between $3-5 / 16^{\prime \prime}$ and $3-6 / 16^{\prime \prime}$ from center of the hole in the turntable.) Making this adjustment for 45 RPM records, automatically provides correct setdown for 33 RPM records.

If the pickup arm does not set-down properly, the set-down point adjustment should be made as follows:

1. Insert the 45 RPM centerpost (2); set the speed change knob (19) to the " 45 " position; move the reject knob (42) to the "Rej" position and then rotate the turntable (clockwise) by hand JUST to the point where the pickup arm stops moving in toward the centerpost and starts moving downward. DO NOT ROTATE THE TURNTABLE BEYOND THIS POINT.
2. Insert a \#6 Allen wrench into the Allen set scretw (34) on the pivot collar (33) as shown in Figure 5. Do NOT loosen the Allen set screw.

Figure 5. Piekup Arm Mounting Detail.
3. From the underside of the changer, hold the pickup arm lever and trip bracket assembly (72) STATIONARY so that it can not move down or to either side.
4. Slightly loosen the Allen set screw (34).
5. Place a ruler against the near side of the 45 RPM centerpost and then move the pickup arm until the distance between the needle and centerpost is from 2-9/16" to 2-10/16".
6. Tighten the Allen set screw (34) VERY CAREFULLY to avoid moving the pickup arm. Before firmly tightening the Allen set screw, make sure that there is a little space (ten thousandths of an inch) between the pivot collar (33) and the stand-off.

ADJusting the pickup arm height

This record changer is designed so that when the needle rests $1 / 16^{\prime \prime}$ above the changer pan, the pickup arm will automatically lift high enough during change cycle to clear the top record of a stack of ten 33 RPM records on the turntable and will not lift high enough to strike the bottom record of a stack of 33 RPM records to be played.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Figure 6. Adjusting Pickup Arm Height.
With the record changer out of change cycle and the pickup arm clear of the turntable, adjust the pickup arm lift adjusting nut (69) (see figure 6), so that the needle rests $1 / 16^{\prime \prime}$ above the top of the changer pan. Turning the nut (69) clockwise raises the pickup arm; turning it counter-clockwise lowers the pickup arm.

To check this adjustment, load the record changer with ten 33 RPM records. Turn the changer on and reject records until the stack has been dropped to the turntable. The pickup arm should not lift high enough to strike the bottom record (of the stack about to be played) but should lift high enough to play the tenth record on the turntable.

If, for some reason, the arm strikes the bottom record or will not lift high enough to play the tenth record, a compromise adjustment should be made. That is, raise the arm slightly to make the arm lift higher or lower the arm slightly to prevent it from striking the bottom record.

Figure 7. 45 RPM Centerpost.

45 RPM CENTERPOST ADJUSTMENT

If 45 RPM records do not drop to the turntable as they should, or if the turntable stalls during change cycle, it will be necessary to adjust the 45 RPM centerpost, (2).

The push-off adjusting shaft (15) is the only adjustment on this centerpost. When properly adjusted, the dimension from the bottom of the adjusting nut (14) to the end of the push-off adjusting shaft (15) is approximately $1 / 2$ inch. To make an adjustment, proceed as follows:

Admiral RC400 Changer, continued

1. Turn the set off. Push the Reject knob (42) to the "Rej" position. Then rotate the turntable clockwise (to the right) by hand until the pickup arm moves as far away from the turntable as it will go. Do not continue to rotate the turntable beyond this point.
2. Insert the 45 RPM centerpost and lock it in place.
3. In this position the record supports (8) should be pulled into the centerpost until the top edge of the

Corner of record support (8) must be slightly (1/32") inside centerpost wall.

Figure 8. 45 RPM Centerpost Adjustment.
record supports are just inside the centerpost. You should only be able to see approximately $1 / 32$ of an inch of the centerpost wall. See figure 8.
4. If the record supports do not pull into the centerpost as far as the position shown in figure 8, remove centerpost, loosen the locknut (14) and turn the push-off adjusting shaft out (counter-clockwise) approximately one half turn.
5. Insert the centerpost and check to see if the record supports "pull in" to the proper position. If they do not, repeat step 4. If they pull in far enough, proceed with step 6.
6. Place a stack of 45 RPM records on the centerpost and turn the record changer on. Push the Reject knob to the "Rej" position and then keep rejecting records until the whole stack has been dropped to the turntable. If each record slides smoothly down the centerpost, the adjustment is satisfactory.
IMPORTANT: If the turntable stalls during change cycle, the push-off adjusting shaft may have been turned out too far. Remove the 45 RPM centerpost and run the changer through change cycle. If the changer does not stall with the centerpost removed, turn the push-off adjusting shaft in about four or five full turns and repeat steps 1 through 6 above.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Admiral RC400 Changer, continued

 SERVICE AND REPAIR DISASSEMBLING THE 45 RPM CENTERPOST (See Figure 9)To disassemble the centerpost for parts replacement etc., proceed as follows:

1. Remove screws (12) from underside of centerpost and lift up the centerpost cap (3). See figure 9. CAUTION: When the centerpost cap (3) is of, use extra care to keep from accidentally pushing up on the push-off adjusting shaft (15). If this shaft is puhed up, the slicer return springs (4) and slicers may fly off and be lost.

WHEM CAP is REMOVED
OO MOT PUEH UP ON Figure 9. Disassembly of 45 RPM Centerpost. OD AOT PUEH UP ON
PUSN-OFF SMAFT (rO)
2. Using a "long nose" pliers or tweezers, remove the slicer spring (4) which holds the top slicer (5) in place. Then remove the top slicer. (NOTE: This slicer has an offset. It must be removed first when disassembling and installed last when reassembling).
3. Remove the other slicer return spring and the bottom slicer (6).
4. Now, push up on the push-off adjusting shaft (15) until the record supports (8) come up over the top of the centerpost.
5. Grasp both record supports with the thumb and two forefingers and lift them off of the slicer cam (9A). Release record supports carefully so record support return spring (7) is not lost.
6. To remove the slicer cam and push-off assembly (9), remove the retaining ring (13) and the pushoff return spring (11) from the underside of the centerpost and lift the assembly off from the top of the centerpost.
When assembling the centerpost, merely reverse the above procedure. When installing the record supports (8) and their return spring (7), place the spring between the record supports and compress the spring enough so the record supports can be slid down over the slicer cam (9A). When installing the slicers (5 and 6) be sure to install the flat slicer (5) first, and then the slicer with the offset.

REMOVING THE PICKUP ARM (See Figure 5)

If the pickup arm must be removed for any reason, proceed as follows:

Important

Do NOT loosen the Allen set screw (34) in the pivot collar (33). If the screw is loosened, it will be necessary to make the set-down point adjustment.

1. Loosen the pivot locking screw (24) at the front of the pickup arm counterweight (21).
2. Turn the pivot screw (22) almost all the way out.
3. Move the pickup arm to the right to free the permanent pivot (part of the counterweight) from the pivot hole in the pivot collar (33). In early production changers, it may be necessary to use a slight twisting or "wiggling" motion to free the permanent pivot. When the permanent pivot has been freed, merely lift the pickup arm assembly up and off.
To reinstall the pickup arm assembly proceed as follows:
4. Slide the counterweight down on the pivot collar (33) until the permanent pivot point falls into the pivot hole in the pivot collar. In early production changers, it may be necessary to set the permanent pivot, point in the pivot hole and then twist or "wiggle" the arm until the counterweight falls into the proper position.
5. Tighten the pivot screw (22) until it is tight and then back it off just enough so the pickup arm can move up and down freely.
6. 'Tighten the pivot locking screw (24).

REMOVING TURNTABLE (3B) AND THRUST BEARING ASSEMBLY (40)

To remove the turntable first place the speed change knob (19) in the "neutral" position. Being sure that the changer is not in change cycle, move the pickup arm away from the turntable. Then remove the retaining clip (37) on top of the turntable and lift the turntable straight up.

Before replacing the turntable, see that the drive wheel (36) is not against the centerpost socket and move the pickup arm as far as possible from the centerpost. Be sure the speed change knob (19) is in the "neutral" position.
No force is nceded to seat the turntable.
Replace the turntable retaining clip (37) on the centerpost socket so that its "turned-up" ends are facing upward and away from the pickup arm.

The cork washers (39) and thrust bearing assembly (40) are removed by sliding them over the centerpost socket. Replace them in the order shown in figure 12.

LUBRICATION

Under normal operating conditions, the motor should never require oiling. Also, do NOT use oil on the 45 RPM centerpost and do NOT oil the roller on the reject lever (43). Any oil on this roller will be transferred to the drive wheel tire when the reject knob is moved to the "Rej" position, which might cause the drive wheel (36) to slip during change cycle. The

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

drive shaft is fitted through an oilite bearing on the drive bracket (78); it also should not require oil.

The rest of the changer, however, should be lubricated with grease whenever it comes into the shop for repairs or adjustment. All pivot and friction points should be greased adequately but not excessively. A good automobile chassis grease may be used for this purpose.

Admiral RC400 Changer, continued

The push-off shaft (16) and the bearing in the turntable hub may be lubricated with SAE No. 20 oil.

Care should be taken to prevent any of the lubricant from coming into contact with the drive or idler wheel tires. Also, be careful when using oil, not to let an excess seep into the felt of the turntable.

RECORD CHANGER TROUBLE SHOOTING

Changer Wiil Not Trip Inte Change Cycle.

1. Check adjustment of trip adjusting screw (75).
2. Check for broken, loose or weak trip tension spring (73).
3. Check for broken, missing or loose trip adjusting lock spring (74).
4. Check for oil or foreign material on the drive wheel tire (36).
5. Check to see that the drive bracket (78) is free (not binding) to pivot around drive bracket hub.
6. Check for broken cycle spring (76).

Changer Trips Into Change Cycle Before Finishing Record.

1. Check adjustment of trip adjusting screw (75); See paragraph under heading "Trip Adjustment."

Changer Will Not Reject.

1. Check for oil or foreign material on the drive wheel tire (36).
2. Check to see that the drive bracket (78) is free to pivot around the drive bracket hub.
Pickup Arm Does Not Set Down Properly.
3. Check set-down adjustment. See paragraph under "Adjustment of Set-down Point".

Records Do Not Drop to Turntable.

1. If 45 RPM records do not drop, adjust push-off adjusting shaft (15). See paragraph under heading " 45 RPM Centerpost Adjustment".
2. If 33 RPM records do not drop, check the pushoff adjustment. See paragraph under heading "Push-off Adjustment".

Changer Stalis in Change Cycie.

1. Check for parts binding.
2. If changer stalls with 45 RPM centerpost in place, adjust push-off adjusting shaft (15). See paragraph under heading " 45 RPM Centerpost Adjustment".

Turntable Wiil Not Revolve When Changer Is Turned On.

1. Check position of speed change knob (19). If it is in "neutral" position, the turntable will not revolve.
2. Check for oil or foreign material on the tires of the compound idler wheel (47).
3. Check for broken idler wheel spring (50).

Changer Causes Rumble or Noise.

1. Check for broken or missing "float" springs (58).
2. Check for speed change knob shaft (19) rubbing against the edge of the cut-out in the changer pan.

Pickup Arm "Skips" Across Records.

1. Check to be sure that cabinet is level.
2. Check for worn needle.

CAUTIONS AND SERVICE HINTS

1. See that the rubber tires on both the drive wheel (36) and the compound idler wheel (47) are kept clean and free from oil, grease, dirt or any foreign material. Carbona or carbon tetrachloride may be used for cleaning these parts.
2. When handling the idler wheel or drive wheel, keep fingers and hands away from the rubber tires. Natural body oils on these parts may possibly cause slippage.
3. When the turntable is off, do NOT push the drive wheel (26) against the centerpost socket.
4. If the record changer is not going to be used for some time, place the speed-change knob (19) in the "neutral" position. This will eliminate the possibility of denting the idler wheel tires (47).
5. When disassembling the 45 RPM centerpost, do not push up on push-off adjusting shaft (15), just after removing the centerpost cap (3).
6. When removing the pickup arm, do NOT loosen the Allen set screw (34) in the pivot collar (33).
7. Do not oil the roller on the reject bracket (43). Oil will be transferred to the drive wheel tire (26) possibly causing slippage during change cycle.
8. When replacing the turntable retaining clip, be sure to slip it on with the "turned-up" ends facing upward.
9. When removing or reinstalling turntable, make sure that the record changer is not in change cycle and that the speed change knob (19) is in the "neutral" position.

[^0]

CROSLEY

MODELS 58XTA, 58XTW

NOTES

1. BOT TOM VIEW OF TUBE SOCKETS. 2 VOLTAGE MEASURED WITH AN
ELECTRDNIC VOLTMETER EROM SOCKETLUG TO FROM SOCKET LU
(PIN 5 OF 14H?)
2. LINE VOLTAGE IITV. 60 CYCLE
3. M.C. $=$ NO CONNECTION.
4. N.C. $=$ NO CONNECTION.
5. W.J. 3 WIRING JUNGTION
6. * = AC. VOLTAGE
7 SOCKET VOLTAGE

Item No.	Part No.	Description	$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Part No.	Description
1 A	AW-146155	Coil, Osc. M.W. ${ }^{\text {Two }}$	26	39373-87	Resistor, 470,000 ohms 1/2 w.
1 B		Coil, Osc. S.W. Section	27	39373-87	Resistor, $470,000 \mathrm{ohms} 1 / 2 \mathrm{w}$.
2	AW-146139	Coil, Ant. S.W.	28	39373-16	Resistor, $150 \mathrm{ohms} 1 / 2 \mathrm{w}$.
3	C-139919-4	1st I.F. Trans.	29	39373-100	Resistor, 3.3 megohm $1 / 2 \mathrm{w}$.
4	C-139919-3	2nd I.F. Trans.	30	39373-84	Resistor, 330,000 ohms 1/3 w.
5	AC-135817	Loop \& Back Assy.	31	39373-26	Resistor, 470 ohm , $1 / 2 \mathrm{w}$.
6	C-137219-2	Condenser, Trimmer, 1.5-12 mmf. (Part of 5)	32	$\begin{aligned} & \text { 39373-119 } \\ & 39373-34 \end{aligned}$	Resistor, 47 ohm 1 w . Resistor, 1,200 ohm $1 \% \mathrm{w}$
7 A	AW-144666	Condenser, Tuning Two Section	34A	39368-14	Control, Volume, 1.0 megohm
7B		Condenser, Tuning /Variable	34 B	39369-1	Switch, Power (Part of 34A)
8 A	AB-144617	Condenser, Trimmer, 3.5-30 mmf. Two	35	C-146133	Speaker
8B		Condenser, Trimmer, $3.5-30 \mathrm{mmf}$. sect.	36	Part of Item 35	Transformer, Output
9	W-135808	Switch, Band Change	37	C-132300-1	Cable \& Plug, Power
10	B-137498-11	Condenser. 50 mmf . 500 v . mica	38	W-48858	Bulb (Dial), Type 47, 6.3 v., 15 amp.
11	39477-43	Condenser, . 022 mfd ., 600 v ., paper	39	39373-80	Resistor, $220,000 \mathrm{ohm}, 1 / 2 \mathrm{w}$.
12	B-137498-22	Condenser, 220 mmf ., 500 v., mica		39232-1	Socket, tube
13	39477-43	Condenser, .022 mfd ., 600 v., paper		C-136721	Background, Dial
14	39477-43	Condenser, .022 mfd ., 600 v ., paper		D-132136-1	Cabinet (58XTA)
15	39477-38	Condenser, .0033 mfd ., 600 v., paper		AW-134738	Cabinet (58XTW)
16	B-137498-14	Condenser, 580 mmf ., 300 v ., mica		W-134667	Clip, Dial Pointer
17	39477-43	Condenser, . 022 mfd ., 600 v., paper		C-136962	Dial Face
18	39477-45	Condenser, . 047 mfd ., 600 v., paper		W-134882	Knob (58XTA)
19	39477-45	Condenser, 047 mfd ., 600 v., paper		W-134883	Knob (58XTW)
20	39477-47	Condenser, .1 mfd ., 600 v ., paper		B-134610	Lens, Dial
21A	B-137649	Condenser, 30 mfd .150 v . ${ }^{\text {T }}$ Two sect.		B-134570	Pointer, Dial
21 B		Condenser, 50 mfd .150 v . $\}$ Elect.		W-51071	Ring, Retaining (Dial Drive Shaft)
22	B-142951-2	Condenser, Resistor .		39220-32 CP	Screw, Chassis Mounting \# 8-32 x 3/4"
23	39373-60	Resistor, 22,000 ohms 1/2 w.		W-134917	Shaft, Dial Drive
24	39373-47	Resistor, 4,700 ohms $1 / 2 \mathrm{w}$.		D-136565-4	Socket Assy., Dial Light
25	39373-102	Resistor, 4.7 megohms 1/2 w.		W-51752 W-132124 SB	Spring, Dial Drive Cord Stud, Trimount

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS CROSLEY
 MODELS 10-102E, 10-103, 10-104W

Alignment Sequence	Frequency in kc.	In Series with	To	Position of Dial Pointer	Adjust for Maximum Ontput
	455	200 mmf	High Side of Loop	1620	A \& B
8	1620	Radiated to Loop	1620	C	
8	1400	*Radiated to Loop	1400	D	

* Place aignal generator output lead near the ioop antenna.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

CROSHEY

MODELS: 10-310, 10-311, 10-313

FREQUENCY RANGE: 540 to 1600 kilocycles. INTERMEDIATE FREQUENCY: 455 kc .
POWER SUPPLY: a.c.-d.c. or Battery.
VOLTAGE RATING: a.c.-d.c., 110 to 120 volts.
"A" Battery, $41 / 2$ volts; "B" Battery, 90 volts.
POWER OUTPUT: 200 M.W. maximum.
POWER CONSUMPTION: 15 watts at 125 volts, 60 cycle.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS CROSEEY

MODEL $\mathbf{1 0 - 1 4 5 M}$

Alignment Sequence	Signal Generator Output			Position of		Adjust for Maximum Output
	Frequency in kc.	$\begin{aligned} & \text { In Series } \\ & \text { with } \end{aligned}$	To	Radio-Phono Switch	$\begin{gathered} \text { Tuning } \\ \text { Dial } \end{gathered}$	
1	455	200 mmf .	Ant.	Counterclockwise	Open	A \& B (See Note 1)
2	1620	200 mmf	Ant.	Counterclockwise	Open	$\underset{(\text { See Note 1) }}{\text { C }}$
3	1400°	*Radiated to Loop			Tune in Signal	$\stackrel{\text { (See Note 2) }}{\text { D }}$

*Place signal generator output lead near the loop antenna.
Notes: 1. Disconnect loop antenna. Connect a 33,000 ohm resistor from pin 8 on 12SA7 tube socket to B-(pin 4 on 12SQ7 tube socket). 2. Remove $33,000 \mathrm{ohm}$ resistor, connect loop antenna and place receiver chassis in cabinet.

CROSLEY

MODEL: $10-307 \mathrm{M}$

NOTES:
I.BOTTOM VIEW OF TUBE SOCKETS 2. VOLTAGES MEASURED WITH AN ELECTRONC VOLTMETER FROM SOCKET LUG TO 8-
3.W.J.: WIRING JUNCTION
4.NC : NO CONNECTION

5 A = VOLTAGES MEASURED WITH RADIO PLUGED INTO IIT VOLT 60 CrCLE LINE
6. ALL OTHER VOLTAGES MEASURED IN BATTERY OPERATION POSITION WITH Xi: 9 VOLTS. "Bः 90 VOLTS.
7. SOCKET VOLTAGE TOLERANCE 10%

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST.OFTEN-NEEDED RADIO DIAGRAMS

DeWald Radio Model D-508

EXT $\sqrt{\text { TELESCOPIC }}$ ANTENNA
$\xrightarrow[\substack{\text { ExT } \\ \text { ANT }}]{\substack{ \\\hline}}$

RANGE:
B.C. Band
S.W., Band 1

540-1700 Kilocycles 16.7 to 5.3 Mc .
5.5 to 1.9 Mc .
I.F. 455 KC.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Model 577, Chassis 120012B
ALIGNMENT
Volume control should be at maximum position; output of signal generator should be no higher than necessary to obtain an output reading. Use an insulated alignment screwdriver.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Emerson Radio

MODELS: 581, 594, 595

CHASSIS MODELS: 120014A, 120071A

1. Voltage readings are in d.c. volts and resistance readings in ohms unless otherwise specified.
2. All measurements made with voltohmyst.
3. Socket connections axe shown as bottom views.
4. Measured values are from socket pin to common negative, unless otherwise specified.
5. Line voltage maintained at 117 volts for voltage readings.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. Volume control at maximum with no signal applied, for voltage measurements.

VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
V1	12SA7GT	0	24 AC	95	95	-13	0	12 AC	-2
V2	12SK7GT	0	36 AC	0	-2	0	95	24 AC	95
V3	12SQ7GT	0	${ }^{-1}$	0	-2	-. 5	55	0	12 AC
V4	50L6GT	NC	90 AC	110	95	0	NC	36 AC	6
V5	35Z5GT	NC	117 AC	112 AC	114	110 AC	NC	90 AC	114

RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8
V1	12SA7GT	0	48	1K*	1 ${ }^{\text {* }}$	24K	0	32	
V2	1.SK7GT	0	60	0	3 Meg .	0	1K*	48	$1 K^{*}$
V3	12SQ7GT	\bigcirc	15 Meg .	0	3 Meg.	${ }_{5} 5 \mathrm{Meg}$.	540X*	0	32
V4	50L6GT	${ }^{\mathrm{N} C}$	110	160*	900*	. 5 Meg.	NC	60	150
vs	35Z5GT	NC	148	145	0^{*}	190	NC	110	${ }^{*}$

NC $=$ no connection; $K=$ kilohm; Meg. $=$ megohm.

* Readings taken to pin 8 of V5.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

 EMERSON RADIO
MODEL: 586

CHASSIS MODELS: 120023B, 120083B

DISCRIAINATOR
ALIGNMENT CURVES (FM)
v_{2}

I.F. AND LIMITER

See page 37 for
36

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Emerson Radio Model 586, Chassis 120023B, 120083B
Circuit diagram and curves on page 36.

ALIGNMENT INSTRUCTIONS

1. Ta pasitian pointer, turn variable candenser fully clased and set painter ta reference mark an dial backplate at the law frequency end af the dial. Valume cantrol should be set at maximum positian. The autput of the slgnal generatar shauld be na higher than necessary Attenuate the signal input as alignment proceeds. Use an insulated ailgnment toal for all adjustments.
Use lsolatian transfarmer if available; atherwise cannect a $\mathbf{.} \mathbf{m f d}$. candenser \ln serles with low slde af signal generator ta chassls.
AM Alignment

	DUMMY	SIGNAL GENERATOR COUPLING	SIGNAL GENERA- TOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd .	HIgh slde ta Pin 6SB7Y. Low slde ta chassis.	455 KC.	Broadcast	Tuning condenser fully open.	Across voice coil.	A1, A2, (Trana T4). A3, A4, (Trans. T2).	Adjust for maximum output. Reduce dummy isolatian trans. is not used.
2		Loop	1600 KC .	Broadcast	Tuning condenser fully open.	Across voice coil.	A5, (Trimmer cond. C6).	Form laap af several turns af wire. Radlate signal Into receiver loop. Adjust for maximum autput.
3		Loop	$1400 \mathrm{KC}$.	Broadcast	Tune for max. output.	Across voice coil.	A6, (Trimmer cand. C5).	Adjust far maximum output.

FM I-F and Disc. Alignment Using AM Signal Generator and VTVM

	DUMMY	$\left\lvert\, \begin{gathered}\text { SIGNAL GENERATOR } \\ \text { COUPLING }\end{gathered}\right.$	SIGNAL GEMERA- TOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \hline \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { VTVM } \end{gathered}$	ADJUST	REMARKS
1	. 01 mfd .	High side ta Pln 4 (grid) of 6567 2nd i.f (V4). Low slde to chassls.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe ta paint $\mathrm{A}^{\prime \prime}$. Camman ta chassls.	$\underset{\text { A7, A8, }}{\substack{\text { Trans. TS). }}}$	Adjust for maximum output.
2	. 01 mfd .	HIgh side ta Pin 4 (grid) af 6SC7 1st 1-f (V3). Low slde ta chassls.	10.7 mc. (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Cannect d.c. probe ta palnt "A". Camman to chassls.	$\begin{gathered} \text { A9, A10, } \\ \text { (Trans. T3). } \end{gathered}$	Adjust for maximum output.
3	. 01 mfd .	High slde to Pin \mathbf{S} (ase. grld) of 6SB7Y canv. (V2). Low side ta chassls.	$\left\lvert\, \begin{gathered} 10.7 \text { mc. } \\ \text { (Unmodulated) } \end{gathered}\right.$	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe ta point "A". Camman ta chassis.	$\begin{gathered} \text { A11, A12, } \\ \text { (Trans. T1). } \end{gathered}$	Adjust for maximum output.
4	. 01 mfd .	HIgh side to Pin 4 (grid) of 6S67 2nd l-f (V4). Law shassis.	10.7 mc. (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe ta point ta chassls.	$\begin{gathered} \text { A13, } \\ \text { (Trans. T6) } \end{gathered}$	Adjust for maximum output.
5	. 01 mfd .	"	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe ta paint c". Cammen ta chassis.	$\begin{array}{\|c\|} \text { A14, } \\ \text { (Trans. T6). } \end{array}$	Adjust for zero output Continue with FM r-f alignment.

FM I-F and Disc. Alignment Using Sweep Signal Generator and Oscilloscope.
Use frequency modulated signal, with 60 cycle modulation and 450 kc . sweep. Use 120 cycle sawtooth sweep voltage in oscilloscope for horizontal deflection.

	DUMMY ANTEMHA	SIGNAL GENERATOR COUPLING	SIGNAL GENERA- TOR FREQUENCY
1	. 01 mfd .	High slde to Pln 4 (grid) of 6SG7 1st l-f (V3). Low side ta chassis.	10.7 mc . (Unmodulated).
2	. 01 mfd .	High side fo Pin 5 (ase. grid) af 6SB7Y canv. (V2). Law slde ta chassls.	10.7 mc . (Unmodulated).
3	. 01 mfd .	High slde to Pin 4 2 nd lif (V4) side ta chassis	10.7 mc . (Unmodulated).

$\begin{aligned} & \hline \text { BAND SWITCH } \\ & \text { POSITION. } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETIING } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \end{aligned}$
Frequency modulation	Tuning condenser fully open.	Vertical linput to Paint "A". Ground to chastils.
Frequency modulation	Tuning condenser fully open.	Vertical Input to Paint " A ". Graund to chassis.
Frequency modulation	Tuning coxidenser fully open.	Vertical input to Paint " C ". Ground to chassis.

ADJUST	REMARKS
(Trans. ${ }^{\text {A8 }}$, A9, A10, (Tráns. T3).	Adjust far maximum autput (helght) and symmetry as per l-f allignment curve shawn.
$\begin{array}{\|c\|} \text { A11, A12, } \\ \text { (Trans. T1). } \end{array}$	Adjust far maximum autput (helght) and symmetry as per l-f allgnment curve shawn.
$\begin{aligned} & \text { A13, A14, } \\ & \text { (Trana. T6). } \end{aligned}$	Alternately adjust A13 far maxlmum amplitude and A14 for maximum stralghtness of cross-over lines, with cross-over occurring nf center of paftern os por discriminotor allgnment curve Cantinue with FM r-f allgnment.

FM R-F Alignment

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

EMERSON RADIO

MODELS: 590, 623

CHASSIS MODELS: 120101A, 120101B

MODEL 590

MODEL 623

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Emerson Radio

VOLTAGE READINGS

TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN ${ }^{\text {a }}$
6SS7	0	${ }_{31}^{19} \mathrm{AC}$	0	${ }^{-9} 6$	${ }^{0}$		${ }_{12} \mathrm{AC}$	50
${ }_{6} \mathbf{1 2 S S A}$	0	31 31 18 AC	${ }_{0}^{83}$	${ }_{8}^{85}$	$\overbrace{0}^{-4.5}$	83	${ }_{31}^{19} \mathrm{AC}$	
${ }^{12 S Q}$	0	$\stackrel{-9}{ } 9$	0	\square		52		${ }_{5.8}^{12} \mathrm{AC}$
${ }_{3575 G T}^{\text {30LGGT }}$	$\stackrel{\mathrm{NC}}{\mathrm{NC}}$	${ }_{117}^{87} \mathrm{AC}$	${ }_{113}^{100} \mathrm{AC}$	106	${ }_{112} \mathrm{AC}$	NC	${ }_{87}{ }^{37} \mathrm{AC}$	${ }_{106}$

D.c. voltage measurements are at 20,000 ohms-per-volt; a.c. voltages measured at 1000 ohms-per-volt.
Socket connections are shown as bottom views.

Measured values are from socket pin to common negative (chassis).
Line voltage maintained at 117 volts for voltage readings.
Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
39

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS Emerson Radio

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

EMERSON RADIO

MODEL: 602

CHASSIS MODELS: 120072A, 120082A
An internal power line antenna is provided for FM reception in relatively atrong signal areas. The line cord should be completely uncoiled for effective operation of this antenna. An external dipole antenna is recommended for maximum FM operation. To connect the dipole, remove the wire from the screw terminal at the rear of the chassis marked " A " and connect the dipole leads to " A " and " G ".

NOTE: This service note covers Model 602. The information contained herein applies equally to similar models, including Models 600 and 616.

TYPE: Single band FM superheterodyne
FREQUENCY RANGE: Frequency modulation band-88-108
megacycles
INSTRUCTIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltage readings are in volts and resistance readings in ohms unless otherwise specified.
2. D.C. voltage measurements are at 20,000 ohms per volt; a.c. voltages are measured at 1000 ohms per volt.
3. Socket connections are shown as bottom views.
4. Measured values are from socket pin to common negative.
5. Line voltage maintained at 117 volts for voltage readings.
6. Nominal tolerance on component values makes possible a variation of $\pm 15 \%$ in voltage and resistance readings.
7. Volume control at maximum, no signal applied, for voltage measurements.
8. Resistance readings in the B+ circuits may vary widely according to the condition of the filter condensers.

VOLTAGE READINGS

SYMBOL 8. TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1 (12BA7)	97 DC	0	0	38 AC	50 AC	0	0	0	96 DC
V2 (12BA6)	-0.5 DC	0	26 AC	38 AC	88 DC	88 DC	0	-	-
V3 (12BA6)	-0.5 DC	0	26 AC	13 AC	88 DC	88 DC		-	-
V4(12S8GT)	-0.3 DC	${ }^{0}$	-0.4 DC	0	-0.3 DC	45 DC		0	-
V5 (35B5) V6 (35W4)	0 0	6 DC $\mathbf{N C}$	50 AC	84 117 AC	110 DC	90 DC NC	$\begin{aligned} & \text { NC } \\ & 118 \mathrm{DC} \end{aligned}$	-	-

NC denotes "no connection."

RESISTANCE READINGS

SYMBOL \& TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1 (12BA7)	70 K	22 K	0	38	50	0	0	0	50 K
V2 (12BA6)	2.2 meg.	0	25	38	60 K	60 K	0	-	-
V3 (12BA6)	2.2 meg.	0	25	12	55 K	55 K	0	-	-
V4(12S8GT)	660 K	0	32 K	0	660 K	610 K	12	0	-
V5 (35B5)	500 K	180	50 85	85	${ }_{160} 50 \mathrm{~K}$	${ }^{50} \mathrm{~K}$	$\mathrm{NC}_{\mathbf{8}}$	-	-
V6 (35W4)	0	NC	85	120	160	NC	80 K		

K denotes "kilohm" (1000 ohms); meg. means "megohm."

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

EMERSON RADIO Model 605, Chassis 120076B

See page 43 for schematic diagram.

ALIGNMENT INSTRUCTIONS

To position pointer, turn variabie condenser fully closed and set pointer to referenco mark en diai backplate ut the iow frequency end of the dial Yolume controi should be set of maximum position. The output ef tbe signai generator shouid be no higber than necessary to obtain an output reading renwate the signai input os elignment preceeds. Use en insuiated aiignment toai for eii adiustments.
Use isolation tronsformer if available; atherwiso connect a .1 mfd . condenser in series with iow side of signal generator te chassis.
AM ALIGNMENT

	PUMMY	SIGNAL GENERATOR	$\begin{aligned} & \text { StGNAL GENERA- } \\ & \text { TOR FREQUENCY } \end{aligned}$	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	$\begin{aligned} & \text { RADIO DIAL } \\ & \text { SETTING } \end{aligned}$	OUTPUT METER	ADJUST	REMARKS
1	. 1 mfd .	High side to Pin 12BA7. Low side to chossis.	455 KC.	Broadcast	Tuning condenser fully open.	Across voice coil.	A1, A2, (Trans T4). $43,-4_{4}$ (Trans. T2).	Adjust for maximum output. Reduce dummy antenna to .001 mfd . If isolatien trans. is not used
2		Loop	1600 KC .	Broadcast	Tuning condenser fully open.	Across voice coil.	$\begin{gathered} \text { A5, } \\ \text { (Trimmer } \\ \text { cond. C6). } \end{gathered}$	Form loop of severai turns receiver loop. Adjust for moximum output.
3		Loop	1400 KC .	Broadcast	Tune for max. output.	Across voice coil.	A6, (Trimmer cond. C5).	Adjust for maximum outpur.

FM I-F and Disc. Alignment Using AM Signal Generator and VTVM

DUMMY	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{aligned} & \text { BAND SWITCH } \\ & \text { POSITION } \end{aligned}$	RADIO DIAL SETTING	$\begin{aligned} & \text { CONNECT } \\ & \text { VTVM } \end{aligned}$	ADJU5T	REMARKS
$1^{.01 \mathrm{mfd} .}$	High side to Pin 1 (grid) ef 12BA6 2 nd i.f (V4). Low side to chassis.	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "A". Common to chassis.	$\underset{\text { (Trans. T'5) }}{\text { A7, }}$	Adjust for maximum output.
2.01 mfd.	High side to Pin 1 (grid) ef 12BA6 1 st i-f (V3). Low side o chassis.	$\begin{gathered} 10.7 \mathrm{mc} \\ \text { (Unmodulated) } \end{gathered}$	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to poiut "A". Common to chassis.	$\left\lvert\, \begin{gathered} \text { A8, A9, } \\ \text { (Trans. T3) } \end{gathered}\right.$	Adjust for maximum output.
3.01 mid.	High side to Pin 2 (osc. grid) of 12BA7 conv. (V2). Low side to chassis.	10.7 mc (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to poiut "A". Common to chassis.	$\begin{array}{\|c\|} \text { A10, A11, } \\ \text { (Trans. T1) } \end{array}$	Adjust for maximum output.
4.01 mfd	High side to Pin 1 (grid) of $12 \mathrm{BA6} 2 \mathrm{nd}$ i-f (V4). Low side to chassis.	$\begin{gathered} 10.7 \mathrm{mc} \\ \text { (Unmodulated) } \end{gathered}$	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to polint "B". Commor to thassis.	$\begin{array}{\|c\|} \text { A12, } \\ \text { (Trans. T6) } \end{array}$	Adjust for maximum output.
5.01 mfd	"	10.7 mc . (Unmodulated)	Frequency modulation	Tuning condenser fully open.	Connect d.c. probe to point "C". Common to ehassis.	$\left\|\begin{array}{c} \text { A13, } \\ \text { (Trans. T6) } \end{array}\right\|$	Adjust for zero output. Continue with FM r-f alignment.

FM I-F AND DISC. ALIGNMENT USING SWEEP SIGNAL GENERATOR AND OSCILLOSCOPE. Use frequency moduiated signal, with 60 eycle modulation aed 450 ke sweep. Use 120 cycle sawtooth sweep voltoge in oscilloscope for horizontal defiection

$\begin{aligned} & \text { DUMMY } \\ & \text { ANTENHA } \end{aligned}$	$\begin{gathered} \text { SIGNAL GENERATOR } \\ \text { COUPLING } \end{gathered}$	SIGNAL GENERA- TOR FREQUENCY	BAND SWITCH POSITION	$\begin{gathered} \text { RADIO DIAL } \\ \text { SETTING } \end{gathered}$	CONNECT OSCILLOSCOPE	ADJUST	REMARKS
1.01 mfd	$\begin{gathered} \text { High side to Pin } 1 \\ \text { (grid) of 12BA6 } \\ \text { 1st ti-f (V3). Low } \\ \text { side to chassis. } \end{gathered}$	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Verticai input to Point "A". Ground to chassis.		Adjust for maximum output (beight) and symmetry as par i-f alignmout curve shown (poge43).
$2 \quad .01 \mathrm{mfd}$	High side to Pin 2 (osc. grid) of 12BA7 conv. (V2). Low side to chassis.	10.7 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open.	Vertical input to Point "A". Groued to chassis.	A10, A11, (Trans. T1).	Adjust for moximum output (height) and symmetry as per if olignment curve shown (poge43).
3.01 mfd	High side to Pio 1 (grid) ef 12BA6 2nd if (V4). Low side to chassis.	10.7 mc . (Unmodulated).	Frequeacy modulation	Tuning condenser fully open.	Vertical inpnt to Point "C". Ground to chassis_	A12, A13, (Trans. T6).	Alternotely adjust A12 For maximum amplitude and A13 for maximum straightness of eross-over lines, with eross-over occurring at center of pottern os per discriminator alignment curve (poge 43). Continue with FM r-f ailignment.

FM R-F ALIGNMENT

	$\begin{aligned} & \text { DUMMY } \\ & \text { ANTENHA } \end{aligned}$	SIGNAL GENERATOR COUPLING	$\begin{aligned} & \text { SIGNAL GENERA- } \\ & \text { TOR FREQUENCY } \end{aligned}$	BAND SWITCH POSITION	RADIO DIAL SETTING	$\begin{gathered} \text { CONNECT } \\ \text { YTYM } \end{gathered}$	ADJUSt	REMARKS
1	$\left\lvert\, \begin{gathered} 150 \text { ohm re- } \\ \text { sistor in series } \\ \text { with each } \\ \text { gen. leod. } \end{gathered}\right.$	High side to FM ant. term. Low side to chassis.	108.0 mc . (Unmodulated).	Frequency modulation	Tuning condenser fully open (108.0 mc)	Connect d.c. probe to point "A". Common to chassis.	A14 (Trimmer cond. C8).	Adjust for maximum output.
2	"	"	106.0 mic.	Frequency modulation	Tune for maximum output.	"	A15 (Trimmer cond. C7).	Adjust for maximum output.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS EMERSON MODEL: 605

Alignment information given on page 42.

CHASSIS MODEL: 120076 B

I.F. AND LIMITER

Voltage and Resistance Readings

In charts below, voltage readings are in D.C. volts, resistance in ohms, unless otherwise specified. D.C. measured at 20,000 ohms/volt, A.C. at 1000 ohms/volt. Values measured from socket pin to common negative. Line at 117 v ., volume at maximum, no signal applied.
VOLTAGE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1	12BA6	0	0	80AC	67AC	76*	78*	.8*	-	-
V2	12BA7	100	-. 5	0	67AC	55AC	0	-. 5	0	95
V3	12BA6	-. 2	0	55AC	43AC	93	98	0	-	-
V4	12BA6	0	0	43AC	30AC	70*	70*	.6*	-	-
V5	12AU6	-. 4	0	30AC	18AC		50	0	-	33
V6	1978	-. 5	-. 4	5.5*	18AC	0	-8	${ }_{\mathbf{N}}^{\mathbf{N}}$	-. 5	33
V7	35B5	0	6	117AC	80AC	132	100	NC		

NC denotes "no connection"; * for bandswitch in FM position only.
RESISTANCE READINGS

SYMBOL	TUBE	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
V1	12BA6	0	0	16	12	65K*	65K*	66	-	-
V2	12BA7	65K	24K	1	56	75	0	0	0	65K
V3	12BA6	2.8 meg.	0	56	44	65K	65K	0	-	-
V4	12BA6	68	0	44	32	65K	65K	68	-	-
V5	12AU6	100K	0	32	20	65K	65K	0	$\overline{4}$	
V6	19T8 35B5	90K	90 K 190	$\begin{aligned} & 150 K \\ & 112 \end{aligned}$	20 80	${ }_{6}^{0} \mathrm{~K}$	1 meg. 65K	$\mathrm{O}_{\mathrm{N}}^{\mathrm{N}}$	4 meg.	550K

K-Kilohms; meg.-megohms.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Emerson

MODELS: 652, 653

CHASSIS: 120032B, 120080B

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

EMERSON RADIO
MODEL: 613
CHASSIS MODELS 120085A

Battery Complement: Replace " A ", battery with standard
"D" flashlight cell. Replace "B" battery with $671 / 2$ volt Eveready No. 467 or equivalent.
The color coding of the battery cable is as follows:
Red-Bt Yellow-A+
White-B-
Black-A-

VOLTAGE READINGS

Socket connections are shown as bottom views. Measurements are taken from socket pin to chassis

1. Use battery power when available. When a.c. power is used, connect the line cord through an isolation transformer if available. Otherwise connect a 0.1 mfd . condenser in series with the low side of the signal generator and B -
2. Set the volume control at maximum. The output of the signal generator should be no higher than that necessary to obtain an output reading. Attenuate the signal input as alignment proceeds. Use an insulated alignment tool.
3. Maintain the loop in the same position relative to the chassis as when the receiver is in the cabinet.
4. Oscillator and antenna trimmers are reached from bottom of chassis.

1	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { METER } \end{aligned}$	ADJUST	REMARKS
	0.1 mfd .	High side to grid (pin 6) of V1 (1R5). Low side to chassis.	455 KC.	Variable condenser fully open.	Across voice coil.	Primary and secondary of T2 and T1.	Adjust for maximum output. If a.c. is used, without an isolation transformer, reduce dummy anterna to 200 mmf .
	200 mmf .	High side to external antenna lead. Low side to chassis.	1620 KC.	Variable condenser fully open.	Across voice coil.	Oscillator trimmer on CIB.	Adjust for maximum output.
	200 mmf .	"	1400 KC .	Tune for maximum output.	Across voice coil.	Antenna trimmer on C1A.	Adjust for maximum output.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS EMERSON RADIO \& PHONOGRAPH CORPORATION
 MODEL: 640

ALIGNMENT INSTRUCTIONS

1. To position pointer, turn variable condenser fully closed and set pointer to reference mark

CHASSIS MODEL: 120112 low-frequency end of dial back- plate.
readine control should be at maximum; output of signal generator should be no higher than necessary to obtain an output
3. Maintain loop in same position relative to chassis, if chassis is removed from cabinet.

	DUMMY ANTENNA	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	$\begin{gathered} \text { RADIO } \\ \text { DIAL } \\ \text { SETTING } \end{gathered}$	OUTPUT METER	ADJUST	REMARKS
1	.1 mfd .	High side to pin 6 (grid) of 1R5. Low side to chassis.	455 KC .	Tuning condenser fully open.	Across voice coil.	$\begin{gathered} \mathrm{T} 2 \text { and } \\ \mathrm{TI} \end{gathered}$	Adjust for maximum output.
2		Loop	1620 KC .	"	"	$\begin{gathered} \mathrm{C4} \\ \text { (osc. } \\ \text { trimmer) } \end{gathered}$	Fashion loop of several turns of wire and radiate signal into loop of receiver. Adjust for maximum output.
3		"	- 1400 KC .	Tune for maximum output.	"	$\begin{gathered} \text { C3 } \\ \text { (Ant. } \\ \text { trimmer) } \end{gathered}$	Adjust for maximum output.

Voltage and Resistance Diagrams, Chassis 120112

* measured to b +

CONDITIONS FOR VOLTAGE AND RESISTANCE READINGS

1. Voltages indicated are positive d.c., resistances in ohms, unless otherwise noted.
2. Measurements made with voltohmyst or equivalent.
3. Socket connections are shown as bottom views, with measurements from pin to chassis.
4. Volume control at maximum, no signal applied, for voltage measurements.
5. Nominal tolerance in component valves makes possible a variation of $I 15 \%$ in readings.
6. On the diagram, upper valves are voltage, lower valves are resistance; K is Kilohms, MEG is megohms. Resistance marked :
are neasured to $\mathbf{B}+$.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Emerson Radio

MODEL: 645

CHASSIS MODEL: $120115{ }^{\circ}$

$\stackrel{\bullet}{4}$
Hin

$2^{1 / 2}$ TURns

DIAL CORD DRIVE

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIQ DIAGRAMS

Emerson Radio

SERVICE NOTES
MODEL: 656B, 657B
CHASSIS MODELS: $120122 B$

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS THE FIRESTONE TIRE \& RUBBER CO.

Stock No. 4-B-31

Voltages token from the different points of the circuit to the chassis are measured with volume cantrol in maximum

 as tubes and vibrator, by removing the eight (8) screws
holding it to the top cover. There are three (3) screws on

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Gamble-Skogmo, Coronado Radio Model 05RAl-43-7755A

Frequency Ranges $-\overline{\mathrm{KC}}$
Frequency modulation 88-108 MC
Intermediate Frequency -
AM 455 KC - FM 10.7 MC

Gamble-Skogmo, Coronado Radio Models 94RAl-43-8510B, \& -8511B

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

 GENERAL ELECTRICMODEL 4SJ4AI

MODEL 4SJ3AI

 TOY RADIO-PHONOGRAPH SOCKET VOLTAGE DATA| 12SA7 | 12SQ7 | celeat | 962006T |
| :---: | :---: | :---: | :---: |
| Pin | Pin | Pin | Pin |
| 1 Gnd | 1 Gnd | 10 | 1 |
| 2 2avac | 20 | 2 24VAC | 280 VAC |
| 3 95V | 3 Gnd | 3115 V | 3 90VAC |
| 4 95v | 40 | 4 95V | 4 |
| $563 / 2 \mathrm{~V}$ | 50 | 50 | 5 110VAC |
| 60 | 635 V | 6 | 6 |
| 7 12VAC | 70 | 7 75VAC | 7 110vac |
| 80 | 8 12VAC | 8 5V | 8 120V |

ALIGNMENT INSTRUCTIONS

1. Turn $S 1$ to Radio and volume to maximum. Connect an output meter across the speaker voice coil. Connect generator ground to B-through a .1 mfd . condensor, and the high side to pin 8 of the 12SA7 tube through . 03 mfd. Tune generator to 445 kc . and tune T 1 trimmers for maximum output reading.
2. Remove generator connection to pin 8, unsolder antenna and attach generator to Ll through 25 mmfd. Turn tuning condenser of set fully open. Set generator to 1620 kc . Tune oscillator trimmer on tuning gang for maximum reading; set R.F. trimmer for maximum output reading. Use only enough generator output to get a reading on the output meter.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS GENERAL ELECTRIC

MODEL 145

Step	Connect Test Oscillator To:	Test Oscillator Setting	Dial Setting	Adjust for Maximum Output
1	1 T4 grid (Pin 6) in series with .05 mfd . cap.	455 KC	550 KC	2nd i-f transformer (T2) primary and secondary cores.
2	1 R5 grid (Pin 6) in series with .05 mfd . cap.	455 KC	550 KC	1st i-f transformer (T1) primary and secondary cores.
3	Inductively coupled (see Note 4)	1620 KC	Gang condenser completely open.	C2B for maximum.
4	Inductively coupled (see Note 4)	1500 KC	For max. signal. Set dial pointer at 1500 KC mark on dial scale.	C1B for maximum

scale.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

GENERAL ELECTRIC
 MODEL 218

ALIGNMENT

EQUIPMENT NECESSARY FOR METER ALIGNMENT

1. Signal generator G-E YGS-3, or equivalent.
2. 20,000 ohm-per-volt meter.
3. Output meter.
4. . 01 mfd . capacitor.
5. Four-turn, six-inch diameter loop of bell wire for AM, r-f and oscillator alignment.
6. Isolation transformer.

NOTES FOR METER ALIGNMENT

1. Connect a 20,000 ohm-per-volt meter from junction of C29 and R18 to chassis. Use a ten-volt scale for steps 3, 4 and 5.
2. Connect a 20,000 ohm-per-volt meter from the grid of the limiter (pin 1 of V 4) to cathode of limiter (pins 2 or 7 of V 4) in series with a 200,000 -ohm resistor. The resistor must be connected directly to the grid pin to minimize capacity loading and to isolate the i-f signal voltage from the meter. Keep signal generator down so that the meter does not indicate more than one volt at the grid (5 microamps through $200,000 \mathrm{ohms}$).
3. Connect a standard output meter across the speaker voice coil. Turn volume control full on. Keep signal generator output low so that output meter indicates not more than $1 / 2$ watt during alignment.
4. Align the AM oscillator trimmer (C13) and the AM r-f trimmer (C9) by coupling the signal to the loop antenna inductively. Connect a four-turn, six-inch diameter loop of bell wire across the signal generator output terminals, and locate the loop about one foot from the radio loop antenna. The position of the loop in respect to the radio loop antenna should not be changed during any one set of adjustments to prevent possible errors in the peak readings.
5. Disconnect the copper strap from the band switch to pin 7 of the 12BE6 to align the 1st FM i-f transformer. Unsolder the strap from the tube pin connection. Resolder the strap after T1 is aligned to 10.7 mc as in step 8.
6. The AM r-f alignment should be made before the FM r-f alignment. With the gang condenser fully closed, the pointer should point to the dot on the dial scale after the letters "FM" on the left end of the dial scale.
7. The termination impedance of the signal generator should be 300 ohms for FM r-f alignment.

MODEL 218 "'H" VERSION

It is the same as the Model 218 except that the local oscillator is designed to operate on the high side of the incoming signal on FM reception. This change reduces the possibility of local oscillator radiation interfering with television reception.

METER ALIGNMENT CHART

Signal Generator Frequency	Signal Input Point	Band Switch Setting	Dial Setting	Adjust	See Note

AM I-F ALIGNMENT

1	455 kc modulated with 400 cps	12BE6 grid (pin 7 of V 2) thru 01 mfd.	AM	550 kc

FM DISCRIMINATOR AND I-F ALIGNMENT

3	10.7 unmodulated	12BA6 grid (pin 1 of V3) thru 0.1 mfd .	FM	-	Adjust T6 secondary for zero. Apply 1 volt signal input.	1
4	See adjust col.				Detune signal generator to point of maximum meter reading.	
5	Same freq. as in step 4				Adjust T6 primary for maximum meter reading.	
6	10.7 mc unmodulated				Adjust slug of T4 for maximum.	
7		12BA6 grid (pin 1 of V1) thru .01 mfd .			Adjust secondary and primary slugs of T3 for maximum.	2
8		12BE6 grid (pin 7 of V2) thru .01 mfd . and 4700 ohms. See note 5 .			Adjust secondary and primary slugs of T1 for maximum.	2, 5

AM R-F ALIGNMENT

| 9 | 1500 kc
 AM mod-
 ulated with
 400 cps | Inductively
 coupled. See
 note 4. | AM | 1500 kc |
| :---: | :--- | :--- | :--- | :--- |$|$| Adjust C13 for maximum. |
| :--- |
| 10 |

fM R-F ALIGNMENT

11	108 me unmodulated			108 mc	Adjust C18 for maximum.	2, 6, 7.
12	98 mc unmodulated	Dipole terminals	FM	For max. output	Adjust Cll for maximum while rocking dial.	

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ALIGNMENT PROCEDURES

MODEL O5WG-2752

AM STAGES

The following is required for aligning:
An All Wave Signal Generator Which Will Provide an Accurately Calibrated Signal at the Test Frequencies as Listed.
Output Indicating Mater, Non-Motallic Scrowdrlver, Dummy Antennos -.1 mf , and 50 mmf .

Volume Control Maximum all Adjustmenis.
Connect Radio Chassis to Ground Past of Signal Generator with o Short Heavy Lead.
Allow Chassis and Signal Generator to "Heot Up" for Several Minutes.

SIGNAL GENERATOR				\qquad	ADJUST	ADJUST FOR
FREQUENCY SETTING	CONNECT GENERATOR OUTPUT TO	THROUGH DUMMY ANTENNA	$\begin{gathered} \text { CONNECT } \\ \text { GROUND } \\ \text { TO } \\ \hline \end{gathered}$			
455 KC	Control Grid 1st 6BAG Pin No. 1	. 1 mf	Chassis 8ase	Rotor Fully Open	$\begin{aligned} & \text { 2nd I.F. Pri. (1) } \\ & \text { and Sec. (2) } \end{aligned}$	Maximum Output
455 KC	Contral Grid 68 E6 Pin No. 7 1st Det.	. 1 mf	Chossis Bose	Rotor Fully Open	1st I.F. Pri. (3) and Sec. (4)	Moximum Output
455 KC	Control Grid 6BE6 Pin No. 7 Control Grid	. 1 mf	Chassis Base Chassis	\qquad	2nd I.F Pri. (1) ond Sec. (2)	Moximum Output
1620 KC	Control Grid 6BES Pin No. 7	. 1 mf	Chassis Base	Retor Fully Open	Oscillotor C-41	Moximum Output
1400 KC	External Antenna Lead	50 mmf	Chossls Bose	Turn Rotor to Max. Output. Set Pointer to 1400 KC See Note A	Antenna C-2	Moximum Output

FM STAGES

The following is required for oligning:
An accurotely colibroted signol generotor providing unmodu.
lated signals of the fost frequencies listed below.
Non-metollic scrowdriver.
Dummy Antennas ond I.F Loading Resistor- $\mathbf{2 5 0 0} \mathbf{~ m m f , ~} \mathbf{3 0 0}$ ohms

Zero center scale DC vacuum tube voltmeter hoving a range of approximately 3 valts.
(If a zero center scale meter is not ovoiloble, a stondord scole vocuum tube voltmeter moy be used by reversing the meter connections for negotive readings).
Allow chassis and signol generotor to "Heat Up" for severol minutes.

SIGNAL GENERATOR

RECHECK ANTENNA \& OSC. ADJUSTMENTS IN ORDER GIVEN

FM ALIGNMENT NOTES

NOTE A-The zero center scale $D C$ vacuum tube voltmeter is to be connected between chassis ground and the AVC line. A signol of .1 volt must be fed into the receiver for this adjustment.
Note output voltage on the zero center DC vocuum tube voltmeter

NOTE B-Disconnect zero center DC vacuum tube valtmeter from AVC and connect it at the audio takeoff point at the 27 K ohm resistor ($\mathrm{R}-10$) and its junction with the terminal strip. Adjust for zero voltage indicatlon.
NOTE C-AM I-F coils must be oligned before attempting to align the FM I.F coils.
NOTE $D-C$ - $n n e c t$ zere center $D C$ vacuum tube voltmeter os in Note A. Adjust input to give some output on the zero center DC vacuum tube voltmeter as in Note A.

MANUA!」 OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

The signal source must be en accurately calibreted signal generator cepable of supplying R. F. signals modulated 30% with a 400 -cycle audio signal. A 400 cycle source is necessary for the audio meesurement.

The table below lists the sensitivity at various points. All measurements are based on en output of 50 -milliwatts. This may be measured by disconnecting the
speaker voice coil and substituting a 3.2 -ohm, 5 -watt resistor across the secondary winding of the outpuf transformer. A reading of . 4 volts AC across this resistor will be equivalent to a 50 -milliwatt output with the speaker connected. Variations of plus or minus 25% are usually permissable. Volume control et maximum for ell adjustments.

SIGNAL GENERATOR				TUNER SETtING	ADJUST FOR MAXIMUM OUTPUT	$\begin{aligned} & \text { INPUT FOR } \\ & \text { 50-MILIWAATT } \\ & \text { OUTPUT } \end{aligned}$
Frequency	Coupling Capacitor	Cennection to Radie	Ground Cennection			
455 kc.	. l m.	Pin No. 8 of I2SA7	$\begin{aligned} & 125 Q 7 \\ & { }_{\text {Pin }} 3 \end{aligned}$	Rotor full open	Trimmers on output and input I.F. cans	100 microvalts
1650 kc.	. 1 mf.	Pin No. 8 of 12SA7	$\begin{aligned} & 125 Q 7 \\ & \operatorname{Pin}_{3} 3 \end{aligned}$	Rotor full opon	Oscillator trimmor C7 (on bottom)	
1400 kc.	none	Soo note A	nono	$\text { Sot } \underset{1400}{\text { dial }}$	Antonna trimmer C2 (on bottom)	
1400 kc.	. 1 mf.	Extornal antonna clip	$\begin{aligned} & 125 Q 7 \\ & P_{\text {in }} 3 \end{aligned}$	1400 ke.	-	13 microvolts
400 cyclos	. 1 mf.	12SQ7, Pin 2	$\begin{aligned} & 125 Q 7 \\ & \text { Pin } 3 \end{aligned}$	-	-	. 05 volts

Noto A: Lay output load of gonorator in back of loop aotonna.

NOTE: On some sots slug tunod l.-F.'s are used instead of trimmer tuned l.-F.'s. $108-1409$ and $108-145 \mathrm{H}$ are trimmer tuned. B-13A-12023-I and B-13B-12022-1 are slug tuned. The slug tuned

Turn up generator output. Loop antenna will pick up onergy.
i.-F.'s are tuned from the top and bottom (secendary on top, primary on bottom).
When trimmer tuned I.F.'s are used, R5 is 270 ohms.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

M	O	N	T	G	O	M	E	R	Y	W	A	R	D

MODELS 84HA1527A
84HA1528A
Intermediate Frequency. 455 KC
motes-
I. socxet vew ane mortom vews.

3. LINE VOLTACt -_II7 V. AC.
. AL VOLTAMEs shown ARE DC UNLes otmenwise secoricd.
al

- DC VOCTAEES SHOWM WEME WEABURED WITH AN ELEOTMOMIO VOLTMETER

TERMMal is Used as a TIE LUES.

7. "nR"- Not reanaze. (TEAOMe ocmenally meanmeless).
a \square BPACE PROVIDED FOW SERVICE mete READMOS.

- all Readimas taken with lime plus polanazeo so that srouno suss AND ChAssis ahe at the same potential with the chasels shouncen.

* caution - see mote s.
tube socket voltage chart

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

WARDS flirline RADIO

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

If $A C$ power is used, use an isolation transformer between power line and receiver. If isolation transformer is not available, connect low side of signal generator to B-through . 1 mf capacitor.

Connect low range output meter across speaker voice coil and set volume control at maximum. For greatest accuracy, keep output of receiver at approximately .05 watt (. 05 watt $=.40$ volt on output meter) throughout alignment by reducing signal generator output as stages are brought into alignment. Use a small fibre screwdriver for aligning IF \& diode transformers.

TUBE \& TRIMMER LOCATION

STEP	DUMY ANTENNA	GFNERATOR CONECTION	GENERATOR FREQUENCY	POINTER SET TO	ADJUST	REMARKS
$\begin{aligned} & \text { IF ALI } \\ & \text { 1. } \end{aligned}$	IGNMENT .1 mf	Rear stator of tuning cap	455 Kc	Gang opened	$1,2,38$	Adjust for maximum.
$\begin{aligned} & \text { RF ALI } \\ & 2 . \end{aligned}$	IGMENT	๒. \quad	1620 Kc	*	5	Adjust for maximum.
3.	None	Radiation loop*	1400 Kc	Tune for maximum	6	Adjust for maximum.

* Connect generator output to $5^{\prime \prime}$ diameter, 3 turn loop \& couple to receiver loop. Keep loops at least 12 . apart.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS Motoorla Noimatio

MODELS 49LIIQ 49LI3Q

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

* Connect generator output to $5^{\prime \prime}$ diameter, 3 turn loop \& couple to receiver loop. Keep loops at least $12^{\prime \prime}$

MANUAL OF 1950 MOST-OFTEN.NEEDED RADIO DIAGRAMS

©Motorola elnc.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS CMotorola elnc. MODELS

 HASSIS
HS-187

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RECORD CHANGER
 MODEL
 RC-36

To adjust the RECORD SUPPORT, prese down on the RECORD SUPPORT RELEASE and move the record eupport to the desired poaition.

FICURE 1. RECORD SUPPORT ADJUSTMENT
PHONOGRAPH CONTROLS

OPERATION

SPEED. The SPEED control determines the speed at which the turntable revolves. You must eet this control to the position corresponding to the playing opeed of the recorde you wish to play, viz., record speed 33 RPM, SPEED control to 33; racord apeed 45 RPM (large center-hole records), SPEED control to 45; or record speed 78 RPM , SPEED control to 78.

CAUTION: The SPEED control can only oe moved clockwise from a playing speed position, but may be moved counterclockuise or clockwise, one position, from an OFF position. To stop turntable - rotate SPEED control clockwise.

REJECT. The REJECT control is momentarily turned clockwise and released to atart playing action or to raject a record before it has completely played.

OPERATING PROCEDURE

1. Turn the radio power ewitch "on" and the phono-radio control to the "phono" position.
2. Select the appropriate center post for the recorde you deaire to play.
a. Tro apindlea are provided; one opindle for omall-hole recorde and one for large-hole recorda.
b. To play omall center-hole records, insert the omall diameter opindle into the hole in the center of the turntable and rotate tise spindle until the pin of the spindle drops into the alot in the turntable bushing.
c. To play large center-hole records, insert the large diameter apindle into the tiarntable hole and turn the spindle counterclockwise until the epindle reaches a otop. NOTE: If the two metal separator discs of the large apindle are oeen protruding from the apindle, turn the opindle shaft until they dioappear inside the spindle, then insert the opindle into the turntable.
d. To remove a spindle from the turntable, merely lift the apindle otraight up from the turntable.
3. Adjust the RECORD SUPPOPT to the correct position according to the aize record you desire to play.
A. Three positions of the record support are provided, l.e., a separate position for playing 7-inch, 10 -inch, and 12-inch recorde (aee Figure 2).
b. TO adjust the RECORD SUPPORT prese dow on the RECORD SUPPORT RELEASE and mOve the RECORD SUPPORT to the correct position according to the size recorde being played. The RECORD SUPPORT wlll lock in poition (see Figure 1). NOTE: Although the ledge of the RECORD SUPPORT is not ued when playing 7 -inch 45 RPN records, the RECORD SUPPORT must he in the 7 -inch playing poaition.
4. Load the records.
a. Raise the RECORD CLAMP to a vertical position.
b. Place a stack of records over the center post in the deaired gequence, with the last record to be played on top.
c. Rest the records on the ledge of the RECORD SUPPORT and on the off-set of the opindie when playing onall-hole records. If you are playing large-hole records, place the recorde over the spindle and rest them on the off-sets of the large opindle.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Record Changer Model RC-36, continued

d. Gently lower the RECORD CLAMP on the records. NOTE: DO NOT LOWER THE RECORD CLAMP WHEN PLAYING 7-INCH 45 RPM RECORDS.
5. Adjust the SPEED control to the position corresponding to the record speed of the records you are playing.
6. Momentarily turn the REJECT control clockwise.
a. The bottom record will now drop to the turntable, the pick-up arm will lift, swing in, and drop to the turntable; record playing will now begin.
3. The REJECT control may be turned momentarily clockwise to reject a record berore it has completely played. NOTE: Never touch the pick-up arm while the record changer is in a changing cycle.
7. At the conclusion of playing ana as the last record is being repeated, lift the pick-up arm and move it to the right.
6. Turn the SPEED control clockwise to the OFF position. NOTE: This stops the turntable, but the motor will continue to run until turned off either with the "phono" control or "power" awitch on the radio panel.
9. Turn the power gwitch on the radio panel "off".

TO UNLOAD RECORDS

1. Raise the PECORD CLAMP.
2. Lift the records atraight up from the turntable. Do not apply pressure to the top record. Keep your thumb free. NOTE: When removing 45 RPM records, if the two metal beparator discs of the large spindle are seen protruding from the apindle, lift the apindle, with the records, from the turntable and turn the apindle shaft until the discs disappear inside the holder before removing records.

A. To play 7-inch amall-hole records, press dow on the RECORD SUPPORT RELEASE and move the RECORD SUPPORT to the extreme outward position. Rest the records on the ledge of the RECORD SUPPORT and on the off-set of the small spindle.

C. To play 12-inch records, preas dom on the RECORD SUPPORT RELEASE and move the RECORD SUPPORT to the extreme inward position. Rest the records on the ledge of the RECORD SUPPORT and on the off-set of the small spindle.

B. To play 10-inch records, preas down on the RECORD SUPPORT RELEASE and move the RECORD SUPPORT to the middle pobition ($1-1 / 2$ inches in from the extreme outward position). Rest the records on the ledge of the RECORD SUPPORT and on the off-set of the small apindle.

D. To play 7 -inch large-hole records press down on the RECORD SUPPORT REIEASE and move the RECORD SUPPORT to the extreme outward position. Rest the records on the off-set of the large spindle.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

FIGURE 3. TOP VIEW OF RECORD CHANGER WITH TURNTABLE REMOVED

THEORY OF OPERATION

Fefer to Figures 3, 4, 5, 6, 7 \& 8 for location of the various parts described in this section. This will enable you to readily follow the operation of this unit.

The turntable is rim-driven. Power is transmitted to the turntable through an idier wheel (109) and a apeed control turret (92). The speed control turret is operated by means of a 3-gear train, linking the turret to the speed change shait assembly (87) which is manually operated by the speed control knob on the record changer base. This control has six positions - 78, 45 \& 33-1/3 RPM and three "off" poitions - controlled by an ingenious six-point cam (87A). This cam permits easy selection of turntable speeds, yet prevents the speed control turret (92) from jamming idler wheel (109) against turntable and caubing flat-spot.s. The speed control can only be moved clockwise from a playing apeed position, but may be moved counterclockwise or clockwise, one position, from an OFF position.

During a playing of a record, only the motor assembly (82) and turntable (119) are in operacion. Balance of the mechanism is inoperative until the change cycle atarts.

THE CHANGE CYCLE
The change cycle may be initiated in two ways - by means of the pick-up arm entering the cut-ofl grooves in the record or by manual operation of the reject knob. Power for the change cycle is obtained from the turntable.

Prior to a change cycle and while the turntable revolves, the weighted end of the drive clutch lever (118) is resting on the trip lever (21A). When the pick-up arm needle finishes playing a record and enters the cut-off groove, the trip arm (36A), attached to pick-up arm ohaft (33), pushes the trip ilag bracket (21B) - or when the changer's "reject" control is turned, the reject arm (4), acting through the reject rod (134), pushes the trip flag bracket (21B). This action releases trip lever arm (21C) allowine the trip lever apring (22) to pull the trip lever (21A) away from the drive clutch lever (118), causing the weighted end (118A) of the drive clutch lever (118) to lower and, consequently, the drive dog (118B) of the drive clutch lever contacta the drive screw (120) on the turntable and the change cycle begins.

When the drive clutch lever (118) engages the drive screv (120) and as the turntable continuea to revolve, this revolving action causes the cycle gear (9) to turn through the drive gear (117). As the cycle gear revolves, its roller (9A) moves the alide channel (21) back and in doing so, the pick-up arm shaft (33) rides up on the incline (21D) or the slide channel, raising the pick-up arm. As the slide channel (2l) continues its backward motion, the clutch fingers (2lf) will engage the set-down arm assembly (36) to swing the pick-up arm in a direction away from the spindle. At the extreme backward travel of the slide channel (21) the push-off lever (600), which rides in the slot (218) of the slide channel, is actuated and this in turn, through the push-off link (72) moves the record push-off lever (71) pushing the lower record off the record support

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS
MOTOROLA Record Changer Model RC-36, continued

FIGURE 4. BOTIOM VIEW OF RECORD CHANGER

84

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Record Changer Model RC-36, continued

(64A) thus permitting it to drop to the turntable. At this same time, the restoring lever (21G) lowers the set-down flag (24C) (which will index the pick-up arm when the slide channel makes its forward motion) also the trip alide cocking atud (6) engages the trip arm (21C) with the trip flag (21B) to set it for, the next cycle and to prevent re-cycling when the alide channel completes its cycle. At this point one-halp of the change cycle is completed.

The cycle gear (9) will continus to rotate until it completes one revolution. As it continues to revolve, the alide channel (21) will move forward and the clutch fingers (21F) that are still engaging the bet-down armassembly (36) will now swing the pick-up arm back toward the record opindle until the set-dow arm (36C) contacts the set-down flag (24C); this controls the pick-up arm set-dow point. While the arm is being held over the set-down point by (24 C), continued rotation of the cycle gear (9) makes the pick-up arn ohaft (33) ride dow the incline (210), lowering the pick-up arm onto the record.

As the slide channel (21) approaches the end of the cycle (fully forward position) the set-down flag (24C) is moved out of the way by the restoring lever (21H) to give the pick-up arm complete freedom of movement during playing of the records.

When the vilide channel moves fully forvara, the drive clutch levar (118) rides up the trip lever incline (21A) and disengages the drive clutch lever dog (118B) from the drive dog acrew (120) in the turntable, thum ending the cycle.

PICK-UP ARM SET-DOWN POINT
The point at which the pick-up arm drops to the turntable for eithar 7-inch, 10 -inch or 12 -inch recorde is determined by the position of the set-down flag (24C).

When the record support assembly (64) is adjusted for a specific size record, the movement of the record aupport causes rotation of the gear and pinion shaft assembly (60 A) through the rack gear (64B) on the record support. Since the gear and pinion shaft assembly (60 A) engages the set-down gear (28 B) and the set-dow cam (28A) is attached to the set-down gear, any movement of the record support will cause the set-down cam to turn. The set-down cam atud (24B), on the slide plate and apring assembly (24A), rides with the set-down cam due to the tension of the slide plate apring (27); therefore, any action of the set-down cam will affect the position of the set-down flag (24C).

45 RPM RECORD DROP

The 45 RPM apindle shaft, when dropped in the turntable center hole, fits into the slot in the tining atop (14).
When the change cycle beging and the slide channel (21) is making ita backward movemont, the reject plate (16) moves forward due to the eccentric form or the drop cam (11) riding on roller (16A) and the tension of the apring (17), pulls the reject plate (16) forward until it contacts timing atop (14), preventing it from rotating. Since the turntable with the 45 RPM spinale continues to rotate and the timing atop (14) and apindle shaft (153) remain atationary, the two pinion gaars (155) in the upper section of the apindle rotate around the apindle shaft (153) gear. The eccentric extending from the upper end of the two pinion gears (155) runs in a slot in the molded record supports to produce the necessary action which causes the supports to move in against the tension of apring (156). As the plastic record supports recede, the separator disca mounted above each record support separate the lower record of the stack and aupport the ramainind stack while the lower record drops to the turntable. With continued rotation of the apindle the record supports, due to the action of apring (156), will move out to support the record stack, while the separator discs recede into the spindle.

When the slide channel (21) is making its forward movement, the reject plate (i6) moves back releasing the timing stop (14) allowing the timing stop and the apindle shaft to revolve for the playing of the record.

FIGURE 7. MOTOR \& SPEED CHANGING ASSEMBLY

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Record Changer Model RC-36, continued

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Record Changer Model RC-36, continued ADJUSTMENTS

NEEDLE SET-DOWN ADJUSTMENT
A template, (Motorola Part No. 54B792330) furnished with the record changer, is required to index the needle to the correct set-down point after a needle or cartridge has been replaced. If a template is not available, you may improvise one as follows:

1. Set a compara to $3-5 / 16$ inches and draw a circle on a piece of cardboard.
2. Punch out a $17 / 64$ inch diameter hole at the exact center of the circle.

To index the needle to the correct set-down point:

1. Place the amall diameter apindle in the turntable and the template over the apindle.
2. Move the record support to the 7 -inch record playing position. NoTE: When the needle is aet correctly for this position, the index will be automatically set for 10 -inch and 12 -inch records.
3. Rotate the turntable by hand and turn the reject control to atart the change cycle. Watch the needle carefully. It must land on the curved line of the template.
4. If the needle does not land on the line, adjust the set-down setscrew (53) located on the pick-up arm (see Figure 11). Turn the setacrew clockwise to move the pick-up arm in a direction towards the spindle, or turn the setscrew counterclockwise to move the pick-up armin a direction away from the apindle. INPORTANT: Turn the screw very alightly and repeat step 3 . Repeat this procedure until the needle lands exactly on the
curved line.

PICK-UP ARM HEIGHT ADJUSTMENT
If the pick-up arm atrikes the bottom record of a etack of records resting on the 45 RPM spindle or the pick-up arm does not riee sufficiently to clear a l-inchatack of records after they have dropped to the turntable, proceed as follows:

1. Remove the cabinet back or remove the record changer from the cabinet, as required, to gain access to the rear of the record changer.
2. The height adjustment acrew (32) is accessible through a hole in the rear of the record aupport housing (138)
(see Figure 3).
3. If insufficient clearance is noted, turn the height adjustment screw (32) clockwise to raise the arm, or counterclockwise to lower the arm, as required.
PUSH-OFF LEVER ADJUSTMENT
If a record faila to drop to the turntable, check the position of the record push-off lever (7a) on the record support during a change cycle; it should protrude a minimum of $1 / 32$ inch from the record aupport during the record dropping portion of change cycle. If adjustment is required, proceed as follows:
4. Remove the cabinet back or remove the record changer from the cabinet, as requirad, to gain acceas to the rear of the record changer.
5. Turn the reject knob to place changer in cycle and rotate turntable by hand until record puah-off lever (7) is at ite point of maximum forward travel.
6. Turn the push-off adjustment acrev (60B) until push-off lever (71) protrudes $1 / 32$ inch beyond lip (64 A) of
record support.

TURNTABLE DRIVE PIN ADJUSTMENT
If a "clicking" noise is heard while a record is playing, the drive dog adjusting acrev (120) on the bottom of the turntable is touching the drive dog (118B). To remedy:

1. Remove the turntable. NOTE: Do not remove the drive clutch levar (118); also do not lose the bearing
washer (115).
2. Loosen the hex nut (121) and turn the drive dog adjusting screw (120) counterclockwise to bring the acrew further away from the drive dog. CAUFION: Do not turn the screw too much, since the screw will not engage the drive dog and, as a consequence, the changer will fail to cycle.
3. Tighten the hex nut (121).

TRIP ARM ADJUSTMENT
If the mechanism does not trip after playing a record or trips before a record has completed ita play, the aet-
down arm (36) requires adjustment.

1. Readjust the needle set-down setecrew (53) (see paragraph on NEEDLE SET-DOWN ADJUSIMENTP).
2. If ad fusting the aetscrew in step 1 does not correct the fault, remove the cabinet back or remove the record changer from the cabinet, as required, to gain access to the rear of the record changer.
3. Turn the set-down adjustment acrev (53) until the end of the setscrew is even with the pick-up arm.
4. Adjust the trip arm adjustment stud (36B) (this is an eccentric stud) sufficiently so that mechanism tripa
5. Read just the needle set-down setacrew (53) (see paragraph on NEEDLE SET-DOWN ADJUSTMENT).

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Motorola Record Changer Model RC-36, continued parts removal and replacement

NEEDLE REPLACEMENT

Use only a Motorole needle; do not use any other needle, as damage to the records or crystal cartridge will result. IMPORTANT: After needle is replaced, check the set-down point as outlined in NEEDLE SET-DOWN ADJUSTMENT.

Two types of needles and crystal cartridges are being used. Look at your needle and cartridge:
IMPORTANT: The needle should be held in the cartridge perpendicular to the surface of the turntable.

1. If the needle is secured to the cartridge with a small, round knurled nut (see Figure 9), loosen the nut and remove the needle from the cartridge. Replace with Motorola needle, Part No. 59 K 691908 . Insert the replacement needle in the cartridge needle receptacle and tighten the knurled nut.
2. If the needle is not held in place with a knurled nut, merely pull the needle from the cartriage using your fingers or pliers (see Figure 10). Replace with Motorola needle, Part No. 59K691909. The repiacement needle is partly encased in a small guard to protect the needle point; push the needle into the cartridge needle receptacle and rempve the guard. Friction will hold the needle in position.

FIGURE 9.

FIGURE 10.

TURN SCREW \sim TO MOVE PICK-UP ARM TOWAROS SPINOLE

CARTRIDGE REPLACEMENT
FIGURE 11.
Two types of cartridges are being used, they are intarchangeable. To remove the cartridge, merely remove the cartridge retainer clip (48) and disconnect the pick-up leads. IMPORTANT: After cartridge is replaced, check the needle set-down point as outlined in NEEDLE SET-DOWN ADJUSTMENT paragraph.

TO REMOVE THE TURNTABLE

1. Remove the turntable retaining clip.
2. Lift the turntable straight up from the base plate. Be sure the bearing (116) and bearing washer (115) do not get lost or dirty.
3. When replacing the turntable, it will be necessary to center the drive clutch lever (118) and bearing washer (115) to allow proper seating of the turntable over the apindle post.
4. Replace the turntable retaining clip.

TO REPLACE THE DRIVE CLUTCH LEVER

1. Place the changer machanimin in the rest position (slide channel (21) in full forward position) with the trip plag bracket (21B) engaged in the trip lever arm (21C).
2. Place the drive clutch lever (118) in position with the weighted end (118A) of the drive dog resting on the trip lever (21A).

TO REMOVE THE DRIVE GEAR

1. Remove the turntable and drive clutch lever (118).
2. Lift the drive gear (117) atraight up from the apindle post.
3. When replacing the drive gear (117) it is important that the changer be timed correctly. To time, position cycle gear so that cycle gear roller (9A) is directily in line with the spindle post (lA) and pull the trip lever (21A) forward so that trip flag (21B) ralla in and locks it in position. Now place the drive clutch lever (118) in position on drive gear (117) and meah the gears so that weighted end of clutch lever (118) resta on the lowest edge of the trip lever (21A) incline. Check the timing by playing a stack of 45 RPM records. If a record of the atack fails to drop during a cycle, move the drive gear (117) one "tooth" and play another stack of records to again check the timing.
TO REMOVE THE MOTOR ASSTMBLY
4. Dlacomnect the power lead.
5. Remove one machine acrew (131) from the bottom of the record changer securing the motor assembly to the base plate.
6. Remove the turntable from the record changer.
7. Remove the two machine acrews (114) securing the motor aseambly to the changer mechani mim.
8. Remove the apeed control knob.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MOTOROLA Record Changer Model RC-36, continued

PICK-UP ARM MOUNTING PLATE ASSEMBLY REPLACEMENT
Should it ever become necessary to remove the pick-up arm mounting plate assembly (24), the following precautions should be observed when raplacing the assembly.

1. Be sure that the hole in the set-down cem (28A) lines up with the hole in the mounting plate and that the set-down can stud (24B) on the set-down flag (24C) is on the outside of the can.
2. Be sure that the set-down flag (24C) is in a position so that it can be actuated by the restoring lever (2lG).
3. The record eupport munt be in the 12-inch playing position when replaced.

TO REMOVE THE SLIDE HINGE AND SLIDE BRACKET

1. Slide hinge (145) is secured with a spring clip (149). To miatch the alide hinge: Place a folded plece of paper on both aldes of the alide hinge, between the alide hinge and the slide cover (243) and pull the paper forward, almultaneously pulling the slide hinge upwardm. See figure 12.
2. Four machine screw secure the slide bracket (146) to the record support and alide cover (143).

SERVICE HINTS

STANDARD OR 33 RPM RECORDS PAIL TO DROP

1. Adjust the push-off lever (71), or -
2. Record center-hole binding on apindle. Ream out with pencil.

45 RPM RECORDS FAIL TO DROP

1. Drive gear (117) does not mesh with cycle gear (9) correctly.

PICK-UP ARM DOES NOT SET DOWN IN CORRECT POSITION

1. Adjuet the set-down setscrev (53).

MECHANISM TRIPS BEFFORE RECORD IS COMPLETEA, OR DOES NOT TRIP AFTER RECORD IS COMPLETED

1. Adjust set-down setscrew (53) and the trip arm stud (36B).

CONTINUOUS CYCLING

1. Drive clutch lever (118) 180° out of phase; merely reverse the drive clutch lever's position on the drive gear (117), or -
2. Grease or dirt on trip flag bracket (21B), or -
3. Set-down flag (24C) not being actuated by restoring lever (21G), or -
4. Turntable bearing (116) or bearing washere (115) misaing.

MECHANISM FAILS TO TRIP WHEN REJECT BUTTON IS TURNED

1. Reject rod (134) not comnected, or -
2. Trip lever spring (22) weak or not connected.

MECHANISM SLOW IN STARTING

1. Bed motor, or -
2. Grease on taler wheel (109) or on apeed control pulleys (95, 96 or 97), or -
3. Parts binding.

TURNTABLE DOES NOT REVOLVE

1. Check the power to the motor, or -
2. Remove the turntable and check to see if the motor shaft revolves, or -
3. Bad motor, or -
4. Grease on the idler wheel (109) or on apeed control pulleys (95, 96 or 97), or -
5. Turntable not seated properly.

NEEDLE JUMPS GROOVES

1. Record changer not level, or -
2. Records dirty - clean with soap and water, or -
3. Needie not set correctiy in the cartridge - it should be perpendicular to aurface of the record.

FIGURE 12. METHOD OF RELEASING CLIP ON RECORD SUPPORT REIEASE

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MODEL 309
Universal auto receiver for under dash mounting. Model 400 receiver is similar but uses miniture tubes as indicated in the chart below:

FUNCTION	309	400
R.F.Amplifier	6SK7GT	6BA6
Oscillator	6SA7GT	6 BE 6
I.F.Amplifier	6SK7GT	6BA6
Det. Audio Amp.	6SQ7GT	6AV6
Power Amplifier	6V6GT	6AS5
Rectifier	6X5GT	6X4

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Motorola Auto Radio Model CT10 for 1950 Chevrolet. Model CT9 used in 1949 Chevrolet is very similar, but uses a 6V6GT power amplifier instead of a GAQ5.

$\Rightarrow \rightarrow=$
 RECEPTACLE
 RECEPTACLE PLUG

TO SET THE PUSH BUTTONS

1. Turn the radio ON and allow it to warm up for a few minutes.
2. Push the top button in as far as it will go and HOLD IT THAT WAY.
3. With the tuning knob, tune in the station you
desire to set up. Tune carefully until you are exactly on the station; tuning to either side of it will result in poor tone quality. Release button and knob after tuning-in the station.
4. Follow above steps 2 and 3 for the remaining four buttons.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS
SENSITIVITY CONTROL. This control must be

MODEL 409

OUMMY ANTENNA
set to provide $2 \pm 1 / 2$ volts bias on the RF tubes before alignment is started. Measure this voltage between sensitivity control terminal and chassis.

For greatest accuracy, keep output of receiver at approximately 1 watt (1 watt $=1.79$ volts on output meter throughout alignment hy reducing generator output (not receiver volume control) as stages are brought into alignment.

IF ALIGNMENT
A. Connect high side of signal generator through .1 mf capacitor to 6BE6 grid (pin \#7) and the low side to chassis. Set generator to 455 Kc and peak adjustments ($1,2,3 \& 4$), in this order, for maximum output.
B. Check alignment by repeating procedure.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ARVIN RADIOS - MODELS 341T
CHASSIS RE-274 4 TUBE AC-DC
MANUFACTURED BY NOBLITT-SPARKS INDUSTRIES, Inc., COLUMBUS, IND.

ALIGNMENT PROCEDURE

PRELIMINARY:
Output meter connection
Output meter reading to indicate 200 milliwatts (standard output)
Dummy antenna to be in series with signal generator output

Across loudspeaker voice coll
0.8 volt

Connection of generator ground lead \qquad
............ See chart below
Floating ground
Generator modulation
trol
Position of pointer with variable fully closed

Position of	Generator Frequency	Dummy Antenna	Generator Output	Trimmers Adjuster	Trimmer Function	Approximate Sensitivity
Variable			Connection			
Open	455 Kc	. 05 uf	12SA7 Grid	2 trimmers	IF	3000 uv
			(Stator of C-1)	on top of T-3		
1400	1400 Kc	. 00005	Antenna lug with Ant. Rem	${ }^{*} \mathrm{C}-2$	Oscillator	360 uv

**Since the antenna section of the variable has no trimmer, the rotor of the variable should be rocked back and forth on both sides of 1400 Kc while adjusting the oscillator trimmer for maximum output. This is to obtain the combination of rotor and trimmer setting to give perfect tracking of the two sections of the variable condenser and consequently give maximum output.
Check sensitivity at 600 Kc . If weak, adjust antenna section plates for maximum output at 600 Kc . Tracking of the condenser at points other than 1400 Kc is accomplished by bending the outside plates on the variable condenser rotor. which are cut for this purpose. When bending plates to track the condenser at any given frequency, keep in mind the fact that this will affect the tracking at all frequencies below the point where the plates are bent. A tuning wand is very helpful in checking the tracking of this condenser, to indicate whether more or less capacity is needed.
The alignment procedure should be repeated stage by stage in the original order for greatest accuracy.
Always keep the output from the test oscillator at its lowest possible value to make the AVC action of the receiver ineffective.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ARVIN RADIOS, MODELS 360TFM AND 361TFM

 CHASSIS RE-260, 6 TUBE AC-DC, AM-FMMANUFACTURED BY NOBLITT-SPARKS INDUSTRIES, Inc., COLUMBUS, INDIANA

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

 ARVIN RADIO Models 360TrM and 361tru, Chassis Re-260
ALIGNMENT PROCEDURE

AM

1. Plug set into 117 V . power source, turn volume control full on and band switch to AM, (left).
2. Connect output meter across speaker voice coil.
3. Comnect signal generator high side through .05 mfd . condenser to converter grid and generator ground lead to receiver floating ground. Open tuning condenser. ator to test loop. Set signal generator io 1650 Ke . Tume trimmer A5 on oscillator section of iuning condenser for maximum output.
4. Close tuning condenser and set pointer at end mark of dial. Open tuning condenser. Connect signal generator to 1650 Kc . Tune trimmer A5 on oscillator section of iuning condenser for maximum output.
5. Set signal generator to 1400 Kc . Adjust trming shaft until maximum output is obtained. Tune antenna trimuner A6 on tuning condenser for greatest output. Reset tuning shaft until output is again a maximum. Retune antenna trimmer. Repeat this cycle of operations at 1400 Kc until no further increase of output can be obtained. Keep generator output at a low valuc to prevent detuning by A. V. C. action.
6. Set signal generator to 600 Kc . Adjust tuning shaft for maximum output. Adjust tuning condenser plates for maximum output.
7. Check sensitivity at 1000 Kc . If sensitivity is too low, tuning condenser plates can be adjusted for tracking at this frequency. If this adjustment is made, tracking at 600 Ke nust be readjusted.
8. Check coverage and calibration after alignment. Covcrage shourld include 535 and 1650 Kc . Calibration slonkl be such that pointer covers some part of calibration mark. If coverage and/or calibration are not correct. plates of tuning condenser can be adjusted. Calibration check points are 1400,1000600 and 540 Kc. If oscillator plates are adjusted, tracking of antenna section nust be rechecked and corrected if necessary.
9. Check setting of trimmers on tuning condenser. Trimmer adjustments must not be extremely tight nor so loose as to be noisy or vibrate.
10. After alignment, check for noise duc to condenser plates tourching or pointer touching dial as tuning shaft is turned through the full tuning range.
11. The sensitivity of this set should be approximately 500 uv / m with 400 cyeles, 30% modulation and 200 milli watts, (8 volt output.

FM

1. Tum band switch to FM, (right).
2. Connect (FM) I.F. generator to the second 12BA6 I.F. amp. grid, (lug \#1) thruugh the .01 uf mica dummy.

Connect oscilloscope across volnme control. With 150 Kc deviation 10.7 on the I. F. generator and the same audio voltage nised as horizontal sweep on the scope, adjust the ratio detector transformer slugs A7-A8 for the characteristic " S " curve (See Fig. 1), with maximum vertical height on the seope. After this adjustment the top slug of the ratio detector should not be moved during the rest of the alignment.
3. Connect I.F. generatur to mixer grid through . 01 mica dummy Using 23 Kc deviation 10.7 Mc adjust 10.7 Me I. F. transformer slugs A9, A10, A11 and A12 for maximum output. Maximum output may be indicated by maximum vertical height on the scope or maximum voltage on a standard output meter across the voice coil of the recciver. After the two I.F. transformers have heen aligned the bottom slug A8 of the ratio detecter should also be peaked.
The characteristic " S " curve of the complete I.F. channel should be checked by applying a 10.7 Mc signal with 150 Ke deviation to the mixer grid and observing the " S " curve on the scoke. It should not be very much different from that observed in step 2.
4. Connect R.F. (FM) generator (88 to 108 Mc) to the antenna terminals through the standard 300 ohm dummy (150 ohm in each side of generator leads). Use R.F.generator with 23 Kc deviation. With the variahle condenser completely open and S.G. tuned to 108.5 Mc adjust oscillator trimmer A13 small ceramic frimmer) for maximum reading on ortport meter.
Then tune recoiver to low end of band (variable completely closed) and S.G. to 87.5 Mc . If the receiver does not tune to this frequency the FM oseillator coil L4 will cither have to be squeczed together or lengthened to cover the band, (scrreezing lowers and lengthening raisos the freguency). Any change in the coil will have to be compensated by the trimmer at the high end of the bund.
5. With the same S.G. connections as per paragraph 4 tune S.C. and set to 105 Mc . Tune R.F. trimmer A14 for maximum output at the same time rock variable back and forth through the frequency. (Rocking is necessary because slight oscillator pulling causes erroneous inaximum readings).
Tune S.G. and set the 90 Mc . Adjust R.F coil L3 length for maximum output by squeezing or lengthening. Any change in the coil will have to be compensated at 105 Me by the R.F. trimner A14.
6. After steps 4 and 5 are finished check calibration and band coverage. Steps 4 and 5 may have to be repeated if set is off calibration. Band coverage should be 87.5 Mc to 108.5 Mc . Sensitivity should be approximately 200 uv at $105 \mathrm{Mc}, 98 \mathrm{Mc}$ and 90 Mc .

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

ARVIN RADIOS, MODELS 356T \& 357T CHASSIS RE-273, 5 TUBE AC-DC

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO PORTABLE RADIO MODEL 50-621

The Philco material on this page and pages which follow has been supplied by the Philco Corporation through whose courtesy it is reproduced.

RADIO DIAGRAMS
 2. Measure the resistance berween $\mathrm{B}+$ (test point
and $\mathrm{B}-$ (test point B). See figure 1 . When the oh
 C101C, and C203 for leakage or shorts. The resistance
value given is much lowert than normal, and is not intende
as a quality check of these condensers; the yalue as a quality check of these condensers; the value given
is the lowest at which the rectifer will operate safely while the voltage checks of Section 1 (power supply) are
performed

TROUBLE SHOOTING

To avoid possible damage to the radio, the following
preliminary checks should be made before it is turned on: 1. Inspect both the top and bottom of the chaskers, and look for any broken or shorred connections, burned resistors,
or other obvious indications of trouble.

Preliminary Checks

 For the tests in this sectuon, use an-f signal generator, with modulated output, set at 45 sk . Connect the generator ground lead to B-, test
point $B ;$ connect the output lead
隹 through a. $1-\mu$. . condenser to the tess
points indicated in the chart. Set the volume control to maximum,
and turn the runing control until the If the 'NORMAL INDICATION' is obatined in step 1 , proceed with the
tosts fot Section $4(\mathrm{r}$-f and converter circuits), if not, isolate and correct

To provide a complete if.amplifier check, est point A for this section is placed at the grid of the mixer in Section 4 ,
therefore, the effectiveness of step 1 as a master check is dependent upon the cond of certain parts in the mixer circuit.
 TROUBLE SHOOTING
 For the tests in this section, with
he exception of the oscillator test, use an r-f signal generator with modulated
output. Connect the generator ground output. Connect the generator ground
lead to B, test point $\mathbf{B} ;$ conect the
out output lead through a. $1 . \mu$. μ. condenser
to the test points indicated in the чипи! Set the tuning control and the signal.
generator frequency as indicated in the If the "NORMAL INDICATION"
 correct he roouble revealed bection thests
the trould is not rect
for this section, check the alignment. or this section, check the alignment.

strer	test roint	sititem.	${ }_{\text {P }}$	noitachiom	rossime causi or amonmal indication
${ }^{1}$	${ }^{\text {A }}$	1000 ke .	1000 kc .		Trouble in this section. Irolate by the follow. ing tests.
${ }^{2}$	$\begin{gathered} \text { C } \\ \text { Ose. test see } \\ \text { note below. } \end{gathered}$		$\begin{gathered} \text { Trune } \\ \text { throukh } \\ \text { renke. } \end{gathered}$	Neptive 4.5 to 7.5 volit. Sol	Defective: 7 AB Open: C401, T400, R400. Shorited: T400, C401, C400, C400B, C402
${ }^{3}$	A	1000 kc .	1000 kc .	Salice at rep 1.	Defective: 7AB Open: LA400. Shorted: C400, C400A, LA400

For rapic trouble shooting, he radio circcite is divided In each chart, the first step is a master check for Failure to obtain the "NORMAL INDICATION" in
any given step indicates trouble within the circuit undet of the chassis showing the locations of the test points and test.
the components of that section.

Section l-Power Supply TROUBLE SHOOTING

Listening Test: Abnormal huili may be caused by open Cl01A, Cl101B, or C101C

TROUBLE SHOOTING

Section 2-Audio Circuits
For the tests in this section, use an audio-frequency sigual generator. Con-
nect the generator ground lead to B lest point B; connect the output lead
through a $.1-\mu$ f. condenser to the test poines indicated in the chart.
Set the volume control to maximum. Set the volume control to maximum. is obrained in step 1 , proceed wirh and
ests for Sections 3 (i-f, detector, and
and col a-v-c circuits); if not, isolate and co
rect the trouble in this section.

TROUBLE SHOOTINC

Section 3-I-F, Detector, And A-V-C Circuits For the tests in this section, use an r-f signal generator, with modulated output,
set at 455 kc. Connect the generator ground lead to B-, test point B; connect ser to the test poinst indicated in the Set the radio volume control to maxiIf the "NORMAL INDICATION" is obtained in srep 1 , proceed with the lests
for Section 4 (r-f and converter circuits); for Section 4 (r.f and converter circuits),
if not, isolate and correct the trouble in this section.
To provide a complete i.f amplifiter check, test point A for this section is placed at the grid of the mixer in Section
4; therefore, the effecciveness of step 1 as a master check is dependent ippon the condition of certain parts in the
inixer circuit These parts are listed below under "POSSIBLE CAUSE OF ABNORMAL INDICATION." -

Section 4-R-F And Converter Circuits TROUBLE SHOOTING

bTEP	$\begin{aligned} & \text { TEATI } \\ & \text { PONST } \end{aligned}$	BIGNAL GEN. FHEQUENCY	$\begin{aligned} & \text { RADIO } \\ & \text { TUNINGG } \end{aligned}$	NORMAL indication	POSSIBLE CAUSE OF ABNORMAL INDICATION
1	A	1000 kc .	Tune to esqnal.	Loud. cloar sppakor output wilh weak generator imput.	Trouble in this seetion. Isolate by the bnllowing tests.
2			Rotate through renge.	Negative 5 to 10 volls.	Delective: 1R5, Open: R402. T400, C405. Shorted: C402, C400C. C400D.
3	\%	1000 kc.	Tune to siqnal.	Same as nitep 1.	Opeot C401. C403. R401, R403. LA400.

TROUBLE SHOOTING
 Fignre 1. Dottom View. Showlng Saction If the in step 1 , proceed with the tests

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	HORMAL wDICATION	ABNORMAL indication	possible cause of amormal indication
1(n)	n	$7.5 v$		Trouble lin this tection. Imolate hy the follnsing lestis
(b)	c			Dofoctivo: CRIOO. Open CIOIA.
2	D	123v	Low voliage Nin vellage	Delecilve: CR100. Opan: S100. S101.
3	E	120\%	Low viltage No vollage	Changed resistance: Rico. Lenky: C101A. Ogen: R100. Shorted: CIOIA.
4	F	63	Low voltnge No voltage	Changed renlalance: R101A. Leaky: Cl01B. Open: R101A. Shnited: CIOIB.
3	\%	7.5v	Low vnlunge High voltage Nn voliage	Changed realslance: RIO1B. Open: One nr more filements. R20S Open: RIOJB. S101.
6	c	00\%	Low voltage High voltage Nis volinge	
Llsiening Tost: Abnarmal hum may ho caused by open Cliolb. C101C. nr C202.				

TROUBLE SHOOTING

 Figere 2. Cottee View, Showing Secting 2 Test Points

 This part, bocated in another seetion may eause ubnormal indication in this section.

gral genera

$$
\begin{aligned}
& \text { gnment first. } \\
& \text { SIGNAL GE } \\
& \text { erator, with }
\end{aligned}
$$

 put to give reading of approximetaly 8.5 volts on d. vatenuated to hold meterer reatiog at this value. NOTE: Before starting FM alignment, allow radio and
signal generator to warm up for 15 minutes. RADIO CONTROLS - Set volume control to maxi-
mum, set band switch for FM reception, and set tuning
control as indicatad in chart.
 D-C VOLTMETER - Connect negative lead of d-c voltmeter (resistance of at least 20, ,000 ohms per volt)
to pin 2 of 19 CB tube, and positive lead to chassis. Use

FM ALIGNMENT CHART					
875	SIGNAL GEMESATOR		EADIO		ADjust
	$\begin{aligned} & \text { COMNECTION } \\ & \text { TO RADFO } \end{aligned}$	$\begin{gathered} \text { DINX } \\ \text { SEITMS } \\ \hline \end{gathered}$	$\begin{gathered} \text { DINX } \\ \text { SEITNS } \\ \hline \end{gathered}$	Special nestajctions	
1	Through a $1 . \mu \mathrm{f}$. condeasere to soantral yride (ple 1) of 	8.1 me	18 mc .	Adjum tuning corses for mocodmum reed. mig oa dee voltrmberor. Aittonuato algacil graorator to matatatn a reading of approcimation 10 voits asepeat adyusimenke unal mo furthor limprovement ha thowe truntog cores encoupt ain ditrected to atep 3.	
2	Through a, $1-\mu f$. condenser to mbior qrid (plin 7) of $12 \mathrm{AT7}$.	8.1 mm.	00 mc .	Adjust taning cores for moxitanum readmy oan de volthmetor. Reppect adjust. motied whill mo further lmprovenuent is oores athor thle avep.	TC2-7M lat H mec. TCl-FKC 1st H pri.
3	same asamep 1.	8. 1 mac	00 me.	Adiusk tunling cone for minhmaum read. Ing en ounprit motw. Thise edfrutmeat to critiocilt ropeat to maiko cerrocin it in correct.	TCP--diecriminator me.
4	To terminal 1 at 11.	105 mc	105 mc	Adjust trimmer for moradranum roading on de voltheners.	C12-WN ome.
5	Same ase eve 4	105 mc m.	105 mc	Bame amape 4.	C18-83 84
-	Samen as atep 4.	$\mathrm{EL}_{2} \mathrm{mc}$	82 mc	Adjuri colil for mondanum readiang on de voltmoner.	LS-ose (tructiog)
7		00 me	00 mc.	8ampan mep E .	22-7X M (tractin)
-	Samo asamep 4.	105 mec	105 mes	8ammas miep 4.	C12-75 me.
B					

MODEL 50-1420
 PHILCO RADIO-PHONOGRAPH MODELS 50-1421 50-1422 AND 50-1423
 1950 MOST-OFTEN-NEEDED

 TROUBLE SHOOTING Agnre 3. Boftom View, Showing Section 3 Test Polnts 1, proceed with the tests for Section 4 (r-f and converter section is placed at the grid of the mixer in Section 4; therefore, the effectiveness of step 1 as a master check is dependent upon the condirion of certain parts in the mixer circuit.
These pars
 Defective: 12BA6, 6AO6. Shorred: C300B, C301A, C301B, C301C,
C381D, C303, C304, WS, L300B, L301A, L301B. Open: R302, R303, R304, R305, L300B, L301A, L301B, R301, C301A, C 301 B . Leaky:
 TROUBLE SHOOTING TROUBLE SHOOTHNC

$\substack{\text { wrator input. } \\ \text { entive } 1.8 \\ \text { to } 3.2}$
Defective: 12BE6. Shorted: C400, C400B, C402,

 .寀
 Section 4-R-F and Cenverter Circuits For the tests in this section, with the exception of the oscillator tess, use an r.f signal generator with modulated
output. Conneca the generator ground lead to B -, test point $\mathbf{B} ;$ connect the outpur lead through a $\mathbf{~ 1}$.mf. condeuser to the test points indicated in the chart.
Set the tadio volume conrrol to maximum, and the radio phono switch to the radio position. Set the tuning control and signal.genetator frequency as indicated in the chart.
If the "NORMAL INDICATION" is obbained in step
 correct the trouble in this section. If the trouble is not
revealed by the tests for this section, check the alignmean.

ster	Pıist	${ }^{\text {sichenepo. }}$	
1	A	1000 kc .	Tune ${ }^{10}$ signal.
2	$\begin{gathered} \mathrm{Cuc}-\mathrm{T} \text { (eat (see } \\ \text { Oote below) } \end{gathered}$		$\begin{gathered} \text { Rotate } \\ \text { Al } \\ \text { trough h } \\ \text { range. } \end{gathered}$
3	A	1000 kc .	$\underset{\substack{\text { Tune } \\ \text { sigali. }}}{\text { io }}$

Ayddins demod-l wolfoes
For the tests in this section, use a d-c voltmeter. Conpositive lead to the test, points indicated in the chart. The

Fignre 1. Bottom View,
Showing Section I Test PoInts

Sectloe 2—Audio Circuits TROUBLE SHOOTINC
For the tests in this section, use an audio-frequency sig. phono switch as indicated in the chart.
nal generator. Connect the generator ground lead to B - If the "NORMAL INDICATION" is obtained in step test point B; connect the ourpur lead through a $1 \cdot \mathrm{mf}$. con: 1, proceed with the tests for Section 3 ($\mathrm{i} \cdot \mathrm{ff}$, detector, and

Figure 2. Boftom View,

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS PHILCO MODEL 50-1424

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

 PHILCO RADIO MODEL 51-934

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

PHILCO RADIO MODEL 51-631

POWER CONSUMPTION
A.C Operation

Battery Operation
11 watts
9.5 mac. from $67.5 \cdot$ volt " B " battery

250 ma, from 1.5 -volt " A " battery

PHILCO MODEL M-20 ALL-SPEED AUTOMATIC RECORD CHANGER

The material on this changer which is used in many Philco combination models begins on this page and continues through page 118. This material is reproduced through the courtesy of the Philco Corporation.

Model M-20

DESCRIPTION OF OPERATIONAL CYCLES

Power for the motor is obtained through the on-off switch mounted on the bridge assembly. This switch is operated manually by the control button with positions OFF-MAN-AUT-REJ. This button is located to the left of the record-shelf assembly, on the top of the Record Changer.

The Record Changer has three speeds, controlled by the Speed Selector located to the right of the record-shelf assembly. The positions of the Speed Selector are ST'D PLAY- 45 -LONG PLAY. These speed changes are brought about by the shift lever, which changes the positions of the idler wheel and pulley with respect to the motor shaft.

The changer mechanism of the Record Changer is brought into action when a small retractable gear segment, mounted on the cam gear, is released, and engages the hub gear of the turntable shaft, causing the cam gear to be driven. While a record is playing, the retractable gear segment is held in the retracted position by the tripplate retaining wall, which engages the roller of the gear segment. The segment is released either manually, by pushing the OFF-MAN-AUT-REJ control to REJ, or automatically, when the changer tone arm reverses direction as the needle follows the eccentric finish groove of a record. For 45 r.p.m. automatic operation, an additional trip mechanism is brought into play. This trip mechanism is actuated by a trip stop, mounted on the trip receiver. When the needle of the tone arm enters the finish groove of a 45 r.p.m. record, the trip stop engages the trip lever, which releases the hammer; this hammer strikes the trip plate, and pushes it aside. The gear segment is then released, as explained above, for either the standard or long-play operations.

The tone arm of the Record Changer is operated by two link assemblies attached to actuator levers, which are in contact with the cam surfaces of the can gear. When the cam gear starts rotating, the lower actuator lever is pushed outward first, and the link assembly with the long cord attached to it raises the tone arm off the record. As the cam gear continues to turn, the upper actuator lever is pushed outward, and its link assembly pulls the tone arm out against the rest post. At this instant, a roller on the cam gear makes contact with the push-off actuator (which is connected to the record-shelf assembly through a series of push-off bars), and operates the recorddropping mechanism.

After the record has dropped to the turntable, the cam releases the upper actuator, permitting the tone arm to move inward. As the tone arm moves toward the center of the turntable, the index finger engages one of the selectors, which stops the tone-arm travel at a point just above the start groove of the record. Following this action, the lower actuator, which is engaged with the lower cam surface of the cam gear, starts riding inward, relaxing the long cord and link assembly, allowing the tone arm to set down onto the record.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Madel M-20

ADJUSTMENTS

INDEXING OR SET-DOWN

7" Record
Set a $7^{\prime \prime}$ record on the turntable, push the OFF-MAN-AUT-REJ control to REJ, and rotate the turntable by hand approximately $41 / 2$ turns. The tone-arm needle

FIGURE 1. $7^{\prime \prime}$ INDEX ADJUSTMENT

FIGURE 2. $10^{\prime \prime}$ INDEX ADJUSTMENT

should be approximately $1 / 2^{\prime \prime}$ above the record at this point. Loosen the clamp screw on the trip arm slightly (figure 9); then hold the tone arm steady, $1 / 8^{\prime \prime}$ in from the edge of the record, and set the trip arm so that the magnetic index stop, Part No. 76-5497, is in contact with the selector hinge (inside selector), Part No. 56-7494, as shown in figure 1. The index stop should engage the selector hinge by a minimum of $1 / 8^{\prime \prime}$.

Tighten the clamp screw, leaving $1 / 32^{\prime \prime}$ vertical play, or clearance, between the trip arm and the base plate.

10' Record

Make the index adjustment for $7^{\prime \prime}$ records first. Check $10^{\prime \prime}$ indexing by the same method as that outlined above. With the needle point $1 / 2^{\prime \prime}$ above the record, and $1 / 8^{\prime \prime}$ in from the outside edge, the index stop should be in contact with the middle selector, Part No. 56-7478, as shown in figure 2.

Ordinarily, the $10^{\prime \prime}$ index is satisfactory after the $7^{\prime \prime}$ index adjustment is made; if not, bend the selector slightly to the right or left, as required, for the proper setdown of the needle.

12" Record

Adjust as given above for $10^{\prime \prime}$ records, except that the index stop should contact the outside selector, Part No. 56-7478. If the indexing is incorrect, bend the selector hinge slightly to the right or left, as required, for proper set-down.

TRIP ACTION

$10^{\prime \prime}$ or $12^{\prime \prime}$ Standard or Long-Play Records

With a $10^{\prime \prime}$ or $12^{\prime \prime}$ record on the turntable, the Speed Selector set to either ST'D PLAY or LONG PLAY, and the OFF-MAN-AUT-REJ control in AUT position, place the tone arm in the finish, or eccentric, groove of the record. The trip finger, Part No. 56-7486, now rides over the ratchet of the trip plate, Part No. 76-5252, as shown in figure 3. The trip finger should ride at an angle of 25° to 30° with respect to the ratchet. To obtain the correct angle, adjust the screw on the trip receiver, Part No. 56-7491, as indicated in figure 3. Make certain that the vertical center line of the trip finger coincides with the center line of the ratchet. To obtain this alignment, loosen screw "A" slightly, and screw "B" completely, on the trip receiver, and swing the trip receiver to the right or left, rotating about point " A " until the trip finger is centered over the ratchet; then tighten the screws.

When this adjustment is made, care should be taken to prevent the trip receiver from being pulled in toward the trip arm too far, as this will prevent the trip-arm stop from engaging the selector hinge by a minimum of $1 / 8^{\prime \prime}$. A compromise between these two adjustments should be reached.

The index adjustment will be affected when making the above adjustments. Remember that these three adjustments are interrelated, and that, when any one of them is made, the other two should be rechecked.

7" - 45 R.P.M. Records

Place a 7", 45 r.p.m. record, with adaptor insert, on the turntable. Set the Speed Selector to 45, and the OFF-MAN-AUT-REJ control to AUT position. Set the tone arm on the portion of the record which contains the leadin grooves. The mechanism should trip when the needle reaches a point approximately $1 / 8^{\prime \prime}$ from the last groove (which is concentric). If it trips before reaching this point, bend the trip finger, Part No. 56-7486, away from the trip-arm stop. If it fails to trip when this point is reached, bend in the opposite direction.

The trip-arm stop should engage the trip by a minimum of $1 / 32^{\prime \prime}$ in both the horizontal and vertical planes, as shown in figure 3 . This may be adjusted by loosening the trip locking screw, and sliding or raising the trip to the desired position.

The horizontal force required to trip the changer and initiate the change cycle should not exceed 2 grams at any turntable speed.

TONE-ARM HEIGHT AND LIFT

With the changer out of cycle, and the tone arm free, set the arm over the base plate. The needle point should be approximately $3 / 10^{\prime \prime}$ above the base plate, as shown in figure 4. To adjust the clearance, bend the protruding ear of the swivel post (bending the ear upward increases the clearance, downward decreases the clearance), as shown in figure 5 . Now raise the tone arm to its maximum height, and place it against the rest post. There should be a minimum of $1 / 8^{\prime \prime}$ clearance between the lower

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

edge of the tone arm and the top of the rest-post hook. Adjust the ear on the swivel post until a mean is reached between the correct rest-post clearance and base-plate clearance.

TONE-ARM HORIZONTAL AND VERTICAL TIMING

Before making the vertical and horizontal adjustments, make the tone-arm height and lift adjustments described above.

FIGURE 4. • BASE-PLATE-CLEARANCE ADJUSTMENT
FIGURE 5. TONE-ARM HEIGHT AND LIFT ADJUSTMENT

FIGURE 6. HORIZONTAL AND VERTICAL TIMING ADJUSTMENTS

FIGURE 7. SPECIAL RECORD-SHELF GAUGE, SHOWN IN CORRECT POSITION

For the vertical timing, start with the changer out of cycle and the tone arm on the rest post, push the OFF-MAN-AUT-REJ control to REJ, and rotate the turntable approximately $11 / 2$ revolutions by hand. At this point, the lower eccentric portion of the cam-and-gear assembly, Part No. 76-3995-2, fully engages the lower (vertical) actuator (the actuator with the cord), Part No. 76-5322. Adjust the wire loop of the lower link, Part No. 56-7023, figure 6, by squeezing or opening the loop so that the safety spring is expanded approximately $1 / 32^{\prime \prime \prime}$. With this adjustment, the ear of the tone-arm swivel post makes firm contact with the lower end of the cutout on the tone-arm pivot assembly.

For the horizontal timing, start as given in the above paragraph. At the same point, $11 / 2$ revolutions from the start of the cycle, the upper eccentric portion of the cam gear fully engages the upper (horizontal) actuator, Part No. 76-5323. Adjust the wire loop of the upper link, Part No. 76-7023, with the short cord, figure 6, by squeezing or opening the loop so that the safety spring is expanded approximately $1 / 2^{\prime \prime}$. With this adjustment, the tone arm should be snug against the rest post, but not so tight as to cause undue slapping as the arm returns to the rest post during cycling.

RECORD SHELF

Set the record shelf to the $10^{\prime \prime}$ position, with the changer out of cycle. Loosen the two hex-head drive screws that hold the record-shelf assembly to the changer base plate just sufficiently to allow movement of the record-shelf stanchion. Place the Philco record-shelf gauge, Part No. 45-1672, over the spindle and onto the record shelf, as shown in figure 7. Move the record-shelf assembly away from the spindle until the large, curved part of the gauge drops even with the record-shelf lips. Now push the record shelf and gauge lightly against the spindle, taking out all play toward the spindle; keep the lips of the record shelf in even contact with the edge of the gauge. Tighten the two hex-head screws.

PUSH-OFF

With the changer out of cycle, push the OFF-MAN-AUT-REJ control to REJ, and rotate the turntable 2 revolutions by hand. At this point, the push-off actuator, Part No. 56-4588, is in its most forward position, in contact with the roller on the cam gear. Loosen the push-off-bar locking screw (indicated in figure 3) slightly (just sufficiently to allow adjustment), and squeeze the push-off ears toward each other until the slide plate on the record shelf extends between $1 / 64^{\prime \prime}$ and $1 / 32^{\prime \prime}$ beyond the lips of the shelf. Tighten the hex-head push-off-bar screw.

NEEDLE PRESSURE

Use the Philco gram scale, Part No. 45-9531. Calibrate the scale to zero by holding it upright for vertical measurement, and setting the pointer to the center line of the scale. The center is the " 0 " point, and each small division on either side of " 0 " is equal to one gram.
,
After the scale has been calibrated to zero, hold the scale perpendicularly to the tone-arm head, and support the tone arm by placing the standard-play needle in the hole at the end of the gram-scale arm, as shown in figure 8. By lifting the gram scale carefully, raise the tone arm approximately $1 / 2^{\prime \prime}$, and note the reading. Then lower the tone-arm, and note the reading. The average of these two readings is the needle pressure, which should be between 7 and 9 grams. The pressure is adjustable by bending the ear at the rear of the tone arm to which the tone-arm spring is anchored, as shown in figure 9. Bending the ear so as to stretch the spring decreases the needle pressure; bending so as to relax the spring increases the needle pressure. If the needle pressure is out of tolerance, make the above adjustments gradually, and recheck after each change, as a small movement gives a rather large variation in needle pressure.

When making this adjustment, be careful not to bend or distort the bracket. If this bracket is deformed, the needle pressure on the last record of a stack will differ from the needle pressure on the first record. When the proper needle pressure is attained, the upper edge of the ear should be parallel to the rear, lower edge of the tone-arm shell. If the bracket was bent while adjusting the ear, gently pry down or push up the bracket (applying even pressure on both sides) until the ear and tone-arm shell are in proper relationship.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Model M-20

49 ADJUSTMENTS (Coninued)

VERTICAL FRICTION

To measure the vertical friction, take two gram-scale readings as explained above under NEEDLE PRESSURE. One-half of the difference between the two readings is the vertical friction, which should not exceed 1.5 grams.

FIGURE 9. NEEDLE-PRESSURE ADJUSTMENT

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

HORIZONTAL FRICTION

Calibrate the gram scale by laying it flat, face-up. Set the pointer to zero (center mark).

Place a counterweight on top of the rear end of the tone arm, with the changer out of cycle; move the counterweight until the tone arm is balanced horizontally, and the needle point clears the turntable. Hold the gram scale face-up, place its pointer against the side of the pickup, and slowly move the gram scale so as to push the tone-arm horizontally with the pointer, as shown in figure 10. Note the reading of the gram scale while moving the tone arm throughout its entire travel (outside the trip range). At no time should the horizontal friction (the force required to move the tone arm) exceed $11 / 2$ grams, nor be less than $3 / 4$ of a gram.
Note: Whenever any repairs or replacements are performed, all adjustments should be checked, and any necessary adjustments made. When making adjustments, check the lubrication at all points indicated in the LUBRICATION section, and lubricate where necessary, after cleaning off old and excess grease with a soft brush and carbon tetrachloride.

UNEVEN TURNTABLE SPRED (WOWS)

Uneven turntable speed may be caused by the following conditions.

1. Dirt under and around the idler-wheel assembly.
2. Idler-wheel spring loose or missing.
3. Flat spot on idler-wheel tire or on turntable.
4. Loose or worn pulley belt.
5. Oil or grease on idler-wheel tire, pulley, or drive shaft.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS Model M-20
 LUBRICATION

When the Record Changer is brought in for service, it should be well cleaned with a fine brush and carbon tetrachloride. Remove the needle guard and clean out accumulated dust with a fine brush. Remove all dirt and old grease and oil. When applying new grease and oil, use it sparingly. Lubrication points are shown in figures 11 and 12. It may be necessary to remove some parts and assemblies in order to properly lubricate them. For example, the cam gear and actuator levers should be removed to lubricate the cam-gear spindle and the actuator stud.

FIGURE 11. TOP VIEW, SHOWING LUBRICATION POINTS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS rcaVictor Model BX6

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCA ICTOR 8BX5, 8BX54, 8BX55 Chasisis R. 1059 A U1

rca Victor

Battery Personal Receiver

MODELS 8B41, 8B42, 8B43
Chassis No. RC-1069, RC-1069A, RC-1069B

Fig. 3-Alignment Sbield

A rubber band should be placed around each tube lor cushioning.
Fig. 5-Twbe and Trimmer Locations

Alignment Procedure

Output Meter.-Connect meter from top lug of TB5 (plate of 3S4) to ground. Turn volume control to maximum position.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a.v.c action.

Alignment Shield.-It is necessary to use a shield during oscillator alignment
Fig. 3 shows the modifications necessary to convert the center strip portion ol a case into a convenient shield to be used as a substitute for the regular case center strip during oscillator alignment.
Il a substitute case is not available, a shield may be improvised using a sheet of aluminum (DO NOT USE STEEL) to approximate the shielding effect of the case on the 1 R5 tube, tuning condenser and oscillator coil.

Steps	Connect the high side ol test osc.	Tune testosc. to-	Turn radio dial to-	Adjust the lollowing lor max. peak output-
1	Connection lug ol Cl located on rear ol gang in series with .01 mi .	455 kc	$\begin{aligned} & \text { Quiet point } \\ & \text { neaz } \\ & 1,600 \mathrm{kc} \end{aligned}$	C12, C13 2nd I-F trans.
2				C6, C7 lst 1-F trans.
3		Hepeat sleps 1 and 2		
4	-Antenna coupling loop	$1,400 \mathrm{kc}$	$\stackrel{14}{\text { Rock gang }}$	$\begin{gathered} \mathrm{C} 4 \text { (ose.) } \\ \dagger \end{gathered}$
5		600 kc	${ }^{60} \text { Rock gang }$	$\begin{gathered} \mathrm{L} 1 \text { (ose.) } \\ \dagger \end{gathered}$
6		Hepeat steps 4 and 5		

*Steps 4 and 5 require a coupling loop from the signal generator to leed a signal into the receiver loop located in the lid. This loop should be loosely coupled to the receiver loop antenna so as not to disturb the receiver loop inductance.
\dagger ALIGNMENT SHIELD MUST BE USED. (See text.)

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

rca \ictor

AC-DC Radio Receiver

 Models 9X561, 9X562
Chassis No. RC-1079-B RC-1079-C

Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
2. Dress power cord down to chassis base and corner.
3. Dress capacitor C18 against back apron.
4. Dress capacitor C 13 down to base alongside of shielded lead.
5. Dress output transformer leads down to chassis.
6. Dress capacitors C 9 and C 15 as direct as possible.
7. Dress dial lamp leads on top of chassis between $12 S Q 7$ and 50 L 6 GT tubes; below chassis, as short as possible to rectifier socket.
8. Dress excess loop leads away from tubes and clear of tuning condenser.

Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the first score mark at the lefthand end of the dial back plate. The four score marks represent: Max. cap. $600 \mathrm{kc} \quad 1400 \mathrm{kc} \quad \mathrm{min}$ cap.

Dial Indicator and Drive Cord

Alignment Procedure

Test-Oscillator. - For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. output
1	12SK 7 I-F grid through 0.1 mfd. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (top and bottom) 2nd I-F trans.
2	Stator of C1 through 0.1 mfd.			*T1 (top and bottom) istI-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	C4 (osc.)
4		1400 kc	1400 kc	+C2 (ant.)
5		600 kc	600 kc	L. 3 (ose.) Rock gang
6		Repeat steps 3,4 and 5.		

*Do not readjust $T 2$ when test oscillator is connected to C1.
+When adjusting C2 (ant. trimmer) it is necessary to have the loop in the same position and spacing as it will have when assembled in the cabinet.

Tube and Trimmer Locations

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCAVICTOR

In some chassls an alternate filter capacilor is used which has three sections. The low voltage section (20 mf. 25 volts) is not used. The aliernate capacitor is mounted on top of the chassis and is available as Stock No. 73975.

RCAVICTOR
 Moobes 9x571, 9×572 Chassis No. RC-1079 RC-1079A

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RCAVICTOR
Automatic Record Player

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCA ICTOR MODEL BX55 chassis No. rc-108s

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS RCA Victor Model Al06 Model 9W106

Chassis No. RC-622

Complete schematic diagram shown on previous page.

Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE aligned first

Alignment Indicators:
An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM align. ment indicator, either to measure audio output or to measure a.v.c voltage.

When audio output is being measured the volume control should be turned to maximum.

AM Alignment
range switch in bc position

Stops	Connect high side of sig. gen. to-	Sig. gon. output	Turn radio dial to	Adjust ior poak output
1		455 kc .	Quiet point at low freq. ond.	
2				
3	Short wire placed near loop ior signal	1400 kc .	1400 kc .	$\begin{aligned} & \text { CI.2T (ose.). } \\ & \mathrm{Cl} .5 \mathrm{~T} \text { (anti). } \\ & \mathrm{CI}-4 \mathrm{~T} \text { (rit). } \end{aligned}$
4		600 kc .	600 kc .	
5				$\begin{gathered} \mathrm{LS}(\mathrm{RF}) \\ \text { with the } 10.000 \\ \text { ohms romovod. } \end{gathered}$
6	Repeat steps 3, 4 and 5 until no improvement in sensitivity is obtained.			

[^1]Alternate loading involves the use of a 47,000 ohm resistor to load the AM plate winding while the AM grid winding of the loaded with the resistor whing peaked. Then the grid winding is one winding is loaded at any one time. Remove the peaked. Only one windor after T 3 and T 2 have been time. Remove the $47,000 \mathrm{ohm}$ Oscillator frequency is above signal trea
FM .

Tube and Trimmer Locations

Slgnal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME
CONTROL MAXIMUM

Stops	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust tor peak output
1	Connect the d.c probe of a Voltohmyst to the neqative lead af the 2 mid. capacitor C 42 and the common lead to chassis. Turn gang condenser to max. capaeity (fully meshed). Volume Control max.			
2	Pin 1 of V4 6AU6 in series with 470 ohm resistor.	10.7 mc . modulated $30 \% 400$ eyclos AM (Approx. .05 volt).	Max. ca. pacity (fully meshed).	T4 top core for max. d-e voltage across C42. T4 bottom core for min. audio Dutput.
3		10.7 mc. Adjust to provide about 4 volts indi. cation on Voltohmyst during alignment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.).
5	High and low slde of signal gen. through two 120 ohm resistors. To ant. terminals.	90 mc .	$90 \mathrm{mc} . \ddagger$	L9 (osc.).**
8		106 mc.	106 mc.	$\begin{gathered} \text { Cl.6T (ant.). } \\ \text { Cl-3T (ri.). } \end{gathered}$
7		90 mc .	80 me.	$\begin{array}{ll} \text { Ll (ant.). } \\ \text { L3 (ri.). } \end{array}$
8	Repeat steps 6 and 7 until no improvement in sensitivity is oblained.			

- Two or more points may be found which lower the audio out. put. At the correct point the minimum cudio output is approcched rapidly and is much lower than at any incorrect point.
+ Align T3 and T2 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
spacing between turns adjustable by increasing or decreasing the \dagger Alter dial pointers.
\neq Aiter dial pointer has been set accurately on calibration point to 90 mc on (sM dial indicator and drive drawing) tune receiver to 90 mc . on FM using dial scale as reference

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RP-168 Series

45 R.P.M. Automatic Record Changer Presented on pages 133 to 144.
 REPLACEMENT PARTS

The record changer mechanism may be used either with or without a metal motorboard. When a metal motorboard is not used, the instrument cabinet serves as the motorboard.
Two major changes have been made since the start of production. One change is the type of pickup arm rest, the original design used a visible rest on the motorboard or instrument cabinet which has been replaced by a rest on the sub-base. The other major change is in the record separators, the original type used rotating gear type of separators which were replaced by a push-out type of separators.
Many other changes have been made and there are differences in the color and finish of some parts when used with certain instruments. These changes did not necessarily involve a change in the identification applied to the bottom of the mechanism sub-base.
Five different pickups are in use: Two (2) crystal pickups, one (1) magnetic pickup and two (2) ceramic pickups.

The RP 168 Series record changer is used in the following instrument models :

RECORD PLAYER ATTACHMENTS

9IY, CP-5203, 45J. QJY
RECORD PLAYERS (without radio)
9EY3. 9EY31. 9EY32. 9EY35. 9EY36, 45EY. QEY3
RADIO-PHONOGRAPH COMBINATIONS
9QV5. 9W51. 9W78. 9W101. 9W102, 9W103. 9W105, 9W106، 9Y7 9Y51, A55, A78, Al06

RADIO-PHONOGRAPH-TELEVISION COMBINATIONS 9TW309. 9TW333. 9TW390, TA128, TA129. TA169, S1000

CAUTION

1. Avoid handling the pickup arm when the mechanism is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turntable if the turntable is stopped in cycle.
4. Do not $\operatorname{tr}_{\mathbf{Y}}$ to operate the mechanism if the separator knives protrude from the center post when the mechanism is out of cycle.
During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.
It the separator knives are thus extended - turn the power on so that the turntable is revolving. push the "start-reject" knob and allow the mechanism to complete a change cycle.

LUBRICATION

A light machine oil (SAE No. 10) should be used to oil the bearings of the drive motor.
On all bearing surlaces, excepting the motor bearings. Houghton STA-PUT No. 320, or equivalent, should be used. On all other sliding surfaces. STA-PUT No. 512, or equivalent, is recommended.

Parts list continued on page 134.

MANUAL OF 1950 MOST－OFTEN－NEEDED RADIO DIAGRAMS

 RP－168 SeriesREPLACEMENT PARTS－Continued

	$\frac{\mu}{\mathrm{H}_{0}}$	No．	DESCRiption
		46	Sprin
	（1070	${ }_{51}^{50}$	
	1075 52		
			or $\}$
	\％	${ }_{59}$	Tripliver ind
	\％206	${ }_{6}^{60}$	Wastiol
	处	${ }_{83}^{88}$	
			Sictew
	边	${ }^{6}$	
$\stackrel{7478}{ }$			
	－		${ }^{\text {22）}}$
$\overline{\overline{49017}}$		${ }^{1}$	Ne．${ }^{\text {No }}$
		${ }_{73}^{72}$	
$\begin{aligned} & \overline{49071} \\ & { }_{7} 4624 \end{aligned}$		73	
	S98		Stion
4041			
			dinc
			shell and s，
${ }_{4824}$			
5058			
			ateme
\％073			
2996			
			－Pickup
			${ }^{\text {a }}$
${ }_{7}^{74627}$			
2468			Pick
		10 A	
			Strow ${ }^{\text {ajo }}$
$\begin{aligned} & 1000 \\ & \hline 100 \end{aligned}$		为	cill
1810			
${ }_{4} 4985{ }^{100}$			退
			and Qry3）
			Sity
			x_{0}

Two different main levers（director lever）are used，depending upon which turntable assembly is used．Lever（41）Stock No． 74076 has a long end（41C）and is used with Turniables Type 1 and Il． Lever（41）Stock No． 74857 has α short end and is used with Turn－
table Assembly Type III．

[^2]Parts list continued on page 138.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RP. 168 Series CYCLE OF OPERATION

Function
Place records over the center post and furn the power on

Push start-reject knob

Pickup arm rises

Explanation

 of the center post. moves trip pawl (37) into tripping position.1. Records rest on separator shelves protruding from either side
2. Start-reject knob which is linked to start-reject slide (45A)
3. As the tumtable rotates, the small projection (8A) (extending from the underside of the turntable) contacts end of trip

Figure 1.

Figure 2.

Figure 4.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS RP-168 Series

Figure 7.

Figure 8.

Separator knives separate the lower record from the stack and allows the record to drop to the turntable

Figure 10.

Figure 12.
TENSION SPRING 42

MUTING SWITCH 63
OPENS
Figure 14.

TENSION SPRING 51

PICKUP ARM RETURN
LEVER 50

Pickup arm moves in for landing

Sapphire is lowe ed to the record

Playing of record is completed and mechanism starts change cycle

Figure 15.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Refer to illustrations on page 136.

1. While the pickup arm is moving outward, the end (41C) of the director lever (41) extending below the motorboard, contacts and prevents the star wheel (62) from rotating.
2. Since the turntable continues to rotate and the star wheel and shaft remain stationary, the two small gears ($5 A$ and 6A) embedded in the upper section of the center post rotate around the gear (7A) on the upper end of the star wheel shaft (7).
3. The eccentric extending from the upper end of the two embedded gears turns in a slot in the separator shelves (5 and 6). This causes the shelves to move in against the tension of spring (4).
A later type of record separators (knives and shelves), illustrated in Figure 8, are actuated by a cam at the top of the shaft. No gears are used. The cam pushes out on the knives which in turn pull in on the opposite shelves.
4. As the shelves recede the separator knives (5B and 6B), mounted above each separator shelf, separate the lower record of the stack and support the remaining records while the lower record drops to the turntable.
5. As the director lever (41) continues to move toward the out of cycle position the end of the director lever (41E) retains conlact with the stud (58 A) on the trip lever (58). This contact stabilizes the inward movement of the pickup arm which is being pushed in by the pickup arm return lever (50).
6. The inward movement of the pickup arm is stopped directiy above the landing position due to the stud (50B) on pickup arm return lever coming in contact with the eccentric stud (45C).
7. The stud (41A) on director lever (41) continues to contact pickup arm elevating lever (35) and lowers the sapphire on the start of the record.
8. As the turntable completes one revolution, the stud (41B) on director lever is pulled through the slot in the cycling cam by the tension spring (42).
9. The end of the director lever (41D) contacts projection (50C) and uniatches the pickup arm return lever (50).
10. The end (41C) of the director lever below the motor board moves away from the star wheel and opens muting switch.

After the selection has been completed the sapphire moves into the tripping groove. At this time the trip lever (58) pushes the trip pawl (37) into position for engagement with the stud (8 A) on the underside of the turntable.
2. This contact between stud (8A) and the trip pawl (37) starts another change cycle and the next record is moved into position for playing.

SERVICE HINTS

Care of Pickup

LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE STYLUS POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening-clean by carefully brushing with a small soft brush.

Replacement of Stylus

Caution: Never bend the stylus support wire.
CRYSTAL PICKUPS (Stock Nos. 74067 and 74625)
Remove the two screws holding sapphire guard in place and remove the guard. Remove the small nut and washer on. the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armature shaft until the sapphire holder assembly comes free.
Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal. Take hold of the lower end of the shaft with a pair of pliers while loosening or tightening the nut, being very carelul so as not to strip the threads of break the cryatal.
Insert threaded shaft of replacement sapphire holder through armature shaft and replace the washer and nut. Make sure that the sapphire is in the correct position.
Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using. check to see that the sapphire projects far enough beyond the guard so that the guard will not touch the record. If necessary, bend the guard a little.

VARIABLE RELUCTANCE PICKUP (Stock No. 74466)

To remove the stylus assembly, insert a bent paper clip or equivalent tool into the stylus stud pin socket at point " A." Press the assembly out from the cartridge with the tool as shown by the arrow in the illustration below.
To replace the stylus assembly, insert the stud pin into the recess " \boldsymbol{A}," with the locating tab positioned above the locating slot " B " between the two pole pieces. Press assembly in firmly by applying pressure upon the stud pin at point " C " with a blunt tool. Care must be taken to press assembly only at point " C " so as not to damage or distort the stylus arm.

CERAMIC PICKUP (Stock No. 74984)

To remove stylus, insert the point of a knife blade between the stylus wire and the case. The stylus may be pried out of its rubber mounting with a twisting motion of the knife blade.
To replace stylus, push end of stylus wire down into its rubber mounting. Be certain that the stylus is centered in the groove of the pickup case.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

RP-168 Series

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

100
NUT \& WASHER
74230
TYPES I ANO II
Figure 18-Pickup Arm Assemblies.
RP-168 Series

FOR MODEL 45EY

TYPES III \& IV AS SHOWN

Sub-base assembles

Type

Sub-base Stock No. 74070. Has staked studs for spring anchors and one-piece reject lever, Stamped or labelled RPI68-1 or RPI68-3.
Type II
Same as Type I, except it uses a two-piece reject lever. Use Stock No. 74743 Sub-base (Type III) for replacement.
Type III
Sub-base Stock No. 74743. Same as Type II, except that it has pickup arm rest on sub-base (when motorboard rest is used, the sub-base rest is to be de formed)
Type IV
Sub-base Stock No. 74468. It uses an a.c. input connector and audio output jack mounted on a separate bracket. Labelled RP168-2 and used only with Model CP-5203.
Type V
Sub-base Stock No. 74856. Has turned up lances for spring enchors. Idler wheel mounting plate (45BStock No. 74814) is removable. It is labelled RPI68-1, RP168B-1, etc. It has pickup arm rest on sub-base (when morm r to be detormed).
Type VI
Stock No. 74803. Similar to Type V, but it does not bear any "RP168" identification. It has pickup arm rest on sub-base. Idier wheel mounting plate (45B) is secured to the sub-base with a shoulder rivet.
Type VII
Same as Type VI, except it does not have pickup arm rest on sub-base. Use Stock No. 74803 (Type VI) for replacement (the pickup arm rest is to be deformed).

 mounting stud (22) staked to its mounting plate. The mounting stud (22) staked to its mounting plate.
idler wheel retainer (horseshoe washer) is Stock No
7508 I . NOTE: Type V (director lever) are used
NOTE: TYpe V Two different main levers (director lever) assembly is used. depending upon which turntabie assembly is used.
Lever (41). Stock No. 74076 has a long end (41C) and
is used with Turntables Types I and II. Lever (41).
Stock No. 74857 has a short end and is used with
Turntable Type III.

PICKUP ARM ASSEMBLIES (LESS PICKUP)

Type I
Arm Stock No. 74041. Stamped 970488. Pickup arm stud (9A) is fuil dicmeter for entire length (co not use where pickup arm rest is on sub-base), Lead counterbalance is riveted to crm.
Arm Stock No. 74443. For Model CP. 5203 only. Black inish, otherwise similar to No. 74041.
Type II
Arm Stock No. 74824. Same as No. 74041 except that stud (9A) has a flat on one side at bottom end. Can be used with either type of pickup rest.
Arm Stock No. 75058. For Model 45EY only. Two-tone tinish, otherwise same as No. 74824.
Type III
Arm stock No. 75073. Stamped 3R1. Similar to No. 4824 except that a different pivot (9B) is used and the crew. Stud Can be used with either type of pickup rest. Use only with No. 74059 pivot arm.
Type IV
Same as Type III except that stud (9A) is of full diameter for entire length. Use No. 75073 for repiacement. Type V
Arm Stock No. 74796. Stamped 3R1. Similar to Type III except that a different pivot (9B) is used and the lead ance spring is used Can be used with either type of pickup rest. Use only with No. 74799 pivot crm
Type VI
Same as Type V except that stud (9A) is of full diameter for entire length. Use No. 74796 for replacement.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

CHANGES-SERVICE HINTS (Continued)

Figure 24-Picknp Arm Rest.

Pickup Arm Rest:

Two different types of pickup arm rest are in use. The original type was visible on the motorboard. The type presently in use is a metal projection on the sub-base.

Sub-base Mounting:

The sub-base is attached directly to metal motorboards and to the cabinets of Models 9JY, QJY and 45J with three screws and three washers. No grommets or spacers are used except with Models 9EY31 and 9EY32.
On all other instruments, the sub-base is cushion mounted to the plastic cabinet with rubber grommets, metal spacers, screws and washers. The mounting is illustrated below.

SCREW 49

* $8.32 \times 34^{\prime \prime}$ FOR PLASTIC CABINETS USING GROMMETS AND SPACERS.
BB-32 $\times{ }^{11_{2}^{\prime \prime} \text { FOR 9JY. }}$
OJY ANO 45 J .
*B.32 ${ }^{3}{ }^{3}$ B' $^{\prime \prime}$ FOR
METAL MOTOREOARD WITHOUT USE OF GROMMETS AND spacers

Figure 2.-Sub.base Mounting.

Separator Assemblies (Rotating Gear Type):

A flat has been added to the separator gears eccentric shafts. This flat permits the shelf (Ill. Nos. 5 and 6) to stay out until the nose of the blade (III. Nos. 5B and 6B) is approximately half-way out. Then the shelf retracts fast. This faster action minimizes unequal dropping of records.
The two types of separator assemblies (Stock No. 74092 lll, No. 7) are NOT INTERCHANGEABLE. In addition the early type has been grouped according to mold number (at bottom of spring hole! and installed in pairs.

Group	Group	Group
Mold Number	Mold Number	Mold Number
1.3.5	9.10	0.8

Assemblies of one group should not be mixed with assemblies of another group or unequal dropping of records may occur. If a matched pair is not available, first check timing of separator knives then the dropping of records: it may be necessary to file the edge of the shelf which released the record last.

The late type (having a fiat on the eccentric shaft) do not need to be grouped, but an early assembly should not be used in conjunction with a late assembly (use two early or two late assemblies). The late type may be identified by its having a shroud at the top of the gear (see Figure 27).

Spindle Nose and Turntable (Type 1):

The wall thickness of the spindle nose (lll. No. 1) has been increased and the machined shoulder at the top of the turntable decreased accordingly. Thick wall spindle nose will not fit on early type turntable. The new type red spindle nose (thick wall) is available as Stock No. 74620.
NOTE: The screws (Ill. No. 21) which hold the spindle nose to the turntable should not be tightened too tight. The spindle nose can be distorted and cause records to bind.

Figure 27
Separator Assembly.

Jamming:

On early RP. 168-1 mechanisms it was sometimes possible to jam the mechanism by maintaining pressure on the reject button during cycle. If such jamming should occur check the following:

1. The tip radius of the reject lever (111. No. 45A) should be 116:".
2. The edges of the Irip pawl (Ill. No. 37) should have a slightly rounded edge (. 010 " radius).
Present production uses a swo piece spring loaded reject lever (IIl. No. 45A! which eliminates the possibility of jamming caused by pressure on the reject button.
Jamming con also be caused by incorrect positioning of the director lever (main lever) (Ill. No. 41) in relation to the star wheel (Ill. No. 62). See Figure 35.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS
 RP-168 Series
 2. Adjust position of star wheel (Inl. No. 62).

CHANGES-SERVICE HINTS (Continued)

Intermittent Non-Tripping:

The trip lever spring (IIl. No. 59) has been increased in tension to provide better tripping action. The new spring has 30 turns and is available as Stock No. 74426.
To reduce friction a washer has been added between the trip pawl (Ill. No. 37), and the trip pawl lever (III. No. 66). It is avail. able as Stock No. 74453.

Eccentric Adiustment Studs:

In early production the eccentric landing (ill. No. 45C) and height (III. No. 45D) adjustment studs were staked to the subbase assembly. They are now secured to the sub-base assem bly with " C " washers. The landing adjustment stud (ill. No 45 C is available as Stock No. 74430. The height adjustmen stud (Ill. No. 45D) as Stock No. 74429 and the "C" washer (1ll No. 92) as Stock No. 74431.

Pneumatic Dashpot

A pneurratic dashpot (Stock No. 74428) has been added to improve pickup arm landing. The dashpot case is clamped to the base sub-assembly and the plunger is attached to the long end of the tone arm lift lever (III. No. 35) (Stock No. 74757).

ADJUSTMENTS

Adjustment Sequence:

1. Synchronize separator shelf (Ill. No. 5) and separator knife (IIl. No. 5B) action (necessary only on rotating gear type of record separators).
2. Adjust position of director lever (main lever: (IIl. No. 41) in relation to the star wheel E_{y} bending if necessary.
3. Adjust tone arm pivot screw (Ill. No. 12) for minimum side play without binding.
4. Adjust sapphire height above motorboard.
5. Adjust tripping position.
6. Adjust landing position.
7. Adjust pickup arm height during cycle.
8. Adjust position of muting switch so that contacts are open law" during playing and are closed during cycle.

Separator Synchronization:

The following applies only to the rotating gear type of record separators:

1. Make certain the two embedded gears (5 and 6) are meshed with gear (7A) on the upper end of the star wheel shaft so the action of the separator knives is synchronized.

Star Wheel Position:

1. Turn the star wheel so that the separator knives are in the position indicated in Figure 33 for rotating gear type of separators or fully retracted for push-out separators.
2. Loosen the two set screws (61) sufficiently to permit the star wheel to rotate without disturbing the shaft (7).
3. Rotate the star wheel points directly to α cam screw or nose screw (visible through slot) as shown in Figure 34.
4. Tighten the two set screws (61) and rotate the mechanism through a complete cycle to check operation. The separator knives must rotate 360° to the starting position as indicated in Figure 33.

ERRATIC PICKUP LANDING

Figure 28.

DISTORTED OUTPUT

Figure 29.

WOW (Speed Variation)

Fizure 31.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Figure 34-Star Wheel Timing.

Director Lever Position:

Push reject lever and rotate the turntable slowly by hand until the end (41 C) of the director lever moves in to its limit of travel so when the star wheel is rotated it contacts by the amount indicated in Figure 35 for lever with long end. For lever with short end, the star wheel should first contact the end (41C) approximately 116 -inch from the front or leading edge of the lever.
If the end of the director lever (main lever) is too close to the star wheel, it will jam. If too far away, it will cause erratic record dropping. If in doubt and unable to measure, move the end toward the star wheel until most of the play is removed when the star wheel is moved back and forth at this setting. With the push-out record separators and the lever with short end, there will be considerable play but the tension of the separator springs holds the star wheel against the lever.

Figure 35 Setting of Director Lever.

Sapphire Height Adjustment (Out of Cycle):

Bend the lug on the pivot arm (40) so that the sapphire point is approximately $111 ;$ " above the motorboard.

Figure 37.

Pivot Screw Adjustment:

Loosen the pivot locking screw (14) and adjust the pivot screw (12) for minimum side play without causing binding.

Figure 36.

Tripping Adjustment:

1. Assemble the pickup arm and trip lever assemblies as shown in Figure 38. Leave the clamping screw (57) loose enough to permit horizontal movement of the trip lever on the shaft. (Allow approximately .010 inch vertical end play.)
2. Turn the eccentric landing adjustment stud (45C) to determine the inward and outward limit of adjustment, then turn it to α setting half-way between the limits.

Figure 38.
3. Tripping should occur when the sapphire reaches a position 1 受!" from the near side of the turntable spindle. This position is adjusted by holding the trip lever and moving the pickup arm inward or outward to obtain the specified position.
4. A convenient way of measuring this distance is to make α mark on the back side of a stroboscope disc 1% : from the inner edge, place the disc on the turntable, with the turntable revolving, hold the disc stationary and move the pickup arm very slowly in towards the turntable spindie.
5. After this position has been obtained, tighten the clamping screw (57) and recheck the tripping position and vertical end play.

Landing Adjustment:

1. After the tripping adjustment has been made as described above, turn the eccentric landing adjustment stud (45 C) so that the sapphire will set down on the record half-way between the outer edge and the first music groove. This position is $25 / \mathbf{m}^{\prime \prime}$ from the turntable spindle. The location of the adjustment stud is illustrated in Figure 42.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Figure 39-Tripping Position.

Pickup Arm Height Adjustment (In Cycle):
Set the mechanism in cycle. Turn the turntable by hand, until the pickup arm has reached its maximum height. By means of a-screwdriver turn the height adjustment stud (45D) until the distance between the top of the turntable and the sapphire point is $3 \frac{4}{4}$ Use that position of the eccentric stud which causes the pickup arm to rise during clockwise adjustment of the stud. The location of the adjusting stud is illustrated in Figure 42.

Figure 41--Height Adjustment.

Figure 42-Height and Landing Adjustment Studs.

Figure 43-Pickup Muting Switch Wiring.

Figure 45.
FAILS TO GO INTO CYCLE

RECORD DROP ON OR HIT PICKUP ARM

Figure 48.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Sears, Roebuck and Co. Chassis 132.877, Catalog Nos. 18 and 20 (Alignment information is given on the next page)

You will find Model 9022, Chassis 132.871 almost identical; while

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Sears, Roebuck and Co, Chassis 132.877, Catalog Nos. 18 and 20.
AM ALIGNMENT

$\begin{aligned} & \text { Position } \\ & \text { of } \end{aligned}$	Generator Frequency
Variable	
Open	455 Kc
Open	1850 Kc
1400 Kc	1400 Kc
${ }^{\text {- } 600 ~ K c}$	600 Kc

- Connect generator lead to a Standard Hazeltine Test Loop, Model 1150, placed two feet from the set loop, or three turns of wire about six inches in diameter, placed about one foot from the set loop. Ot the generator can be connected with the high side lead to the AM antenna screw terminal and the ground lead to the chassis.
. With a generator signal of $\mathbf{0 0 0} \mathrm{Kc}$, tune the set to the point where maximum output is obtained, which should be approximately 600 Kc on the dial. Adjust antenta section places of variable for maximum output.

FM ALIGNMENT

Detector and I.F. alignment using Signal Cenerator and Oscilloscope.

1. Connect FM Generator, High side, to grid (pin 1) of 6BA6 2nd I.F. tube through .005 mfd . dummy.
2. Set generator frequency to 10.7 Mc . modulated either 60 cycles or 400 cycles, $250 \mathrm{Kc} 5 w e e p$ (125 Kc. deviation).
3. Connect vertical input of scope across volume control of receiver (grounded terminal to chassis, ungrounded terminal to high side of control).
4. Set scope switch for internal synchronization and set horizontal oscillator to $2 X$ frequency of modulating voltage of generator. (120 or 800 cycles)
5. Turn variable condenser fully open, and band switch to right (FM).
6. Adjust frequency vemier of horizontal oscillator on scope until the pattern becomes stationary.
7. Adjust ratio detector primary slug No. A7 for maximum vertical sweep of the scope pattern.
8. Adjust ratio detector secondary slug No. A8 to center the cross over point of the pattem. Pattern should look like Fig. I, with the same amount of curve on both ends, and the cross over point in the center.
9. Connect generator, high side, to center antenna screw terminal on bottom of chassis.
10. Adjust I.F. slugs A9, A10 and All for the greatest vertical sweep of the pattern, consistent with linearity. If the IIF. slugs are adjusted for maximum sweep of the pattern, the pattem may become non-linear. Therefore, adjustment should be made for the greatest sweep which can be obtained and still have all four ends of the "X" pattern similar in size and shape.
11. Check the alignment of the I.F. and detector circuits by varying the signal generator frequency above and below the center frequency of 10.7 Mc . If the receiver is perfectly aligned, two smaller "X" patterns of similar size and shape will result, orie on either side of the center frequency. See Figure 2

Position of Variable	Cenerator Frequency	Dummy Ant.	Generator Connection High Side
Fully Open	108.5 Mc.	-300 ohm	Ant. (FM)
Fully Closed	87.5 Mc.	${ }^{\text {e }} 300$ ohm	Ant. (FM)
105 Mc .	105 Mc .	${ }^{\bullet} 300$ ohm	Terminal
			Terminal Ant. (FM)
91 Mc.	91 Mc.	${ }^{*} 300$ ohm	Terminal

x Pattern
CENTER FREOLDNCY

SNALL X PATTEAN AECVE NO BELOW CEMTER FRECUACY

Cenerator
Connect Ground Lead
Ground (C)

Terminal Ground (C) Terminal Ground (C) Terminal Ground (C) Terminal

Adjust Trimmers In Order Shown

112
Check Point A13

Check Point

Trimmer
Function
I.F.

Oscillator
Antenna
Antenna

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Sears, Roebuck and Co. Chassis 135.244, Catalog No. 9073

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

SentinelRadio MODELS 312PW, 312PG, 1U312PW, 1U312PG

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

SentineRRadio

MODELS 331-W, 331-I, 331-R
AC-DC SUPERHETERODYNE RECEIVER

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Sentine Recio

	Before sta a) Check the dia exact b) Use c) Place	ng alignment tuning dial ad pointer mus to last line m accurately ca oop antenna in	ustment be exactl ve to corr ibrated te the sam	AM by tuning gang co y even with the la ect position. st oscillator with position it will be	ALIGNMENT PROCED ndenser until plates touch maxi t line at the low frequency end some type of output measuring in when set is in the cabinet.	JRE um capacity stop (completely in mesh) at which point the AM dial calibration. If dial needle does not point vice.
Stops	Place band awiteh for oporation on:	Set recolver dial to:	Adjust tost ose iliator frequeney to:	TEST Use dummy antonna in series with output of test oseillator consiating of:	OSCILLATOR Attach outpul of iest oseillator to:	Rofer to parts layout diagram for location of trimmers montioned bolow:
1	AM Band positlon	Any point where no interfering sig. nal Is recolved	bactly 4ins K. C.	0. 2 31fd. Condenser	High side to AM-Osc. stator plates of tuning condenser (10D). Low slide to frame of condenser throutsh .of affd. condenser.	Adjust each of the ${ }^{\text {nnd }} 455$ K. C. AM I. F. transforiner trlmmers for maximum outjut, then adjust each of the lst 455 K . C. AM 1. F. transformer trinmers for maximum output.
2	AM Rapd position	Fractly 1730 K.C.	$\begin{gathered} \text { 1ixactly } \\ 17: 30 \mathrm{~K} . \mathrm{c} . \end{gathered}$		Recelver hlue antenna lead Recelver black ground lead	Adjust 1730 K .0. osclllator trimner for maximum output.
3	AM Band position	Approx. 1400 K . C.	$\underset{\substack{\text { Approx. } \\ \text { 1400 K. } \\ \text { C. }}}{ }$		Recelver bluo antenna lead Recelver slack ground lead	Adjust 1400 K . C. AM Ant. trimmer for maximmm output.

Models 333-I and 333-W FM and AM

ALIGNMENT PROCEDURE
 (A) Connect Output Meter across voice coil of speaker.

Remove jumper wire from terminals \#1 and \#2
leop
(C) Connect the hot Signal Generator lead through a 300 Ohm Resistor to the \#1 post on terminal strip and the other lead to the post marked \#3.

27.75 MC PLATE COIL ADJUSTMENT

(A) Set Signal Generator to deliver a modulated 27.75 MC Signal. (B) Adjust 27.75 MC Plate Coil Trimmer for maximum reading on 108 MC and 105 MC ADIUSTMENT Set Signal Generator to deliver a modulated 108 MC signal. Tune receiver dial to MINIMUM CAPACITY STOP.

Adjust 108 MC Oscillator Trimmer for maximum reading on要
(D) Tune receiver dial and Signal Generator to 105 MC .
(E) Adjust 105 MC Antenna Trimmer for maximum reading

FM ALIGNMENT

 and its associated circuits. One triode of the tube is used for Oscillator and covers a band 27.75 MC above the 88 to 108 FM Band.
The other triode is used for RF Input, Super-regenerator and Detector. This triode oscillates at 27.75 MC and is quenched by an RC network

In tuning this receiver on FM, it will be noticed that two signals will be received with a null point between them. These two signals will be substantially equal in tone and volume and either one can be used.
 the receiver being tuned to one side of the carrier center frequency quieting is found at the null point, at which no frequency discrimina. tion takes place and therefore no audio signal is produced.

The equipment necessary for FM alignment consists of the following: (A) An Audio Output Meter.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS
 Sentinel
2. UNSOLDER ANTENNA WIRES C AND D.

FOR AC-DC OPERATION, OPEN BACK, PLACE
LINE CORD IN NOTCH AND CLOSE BACK

MODELS 335PM,

 335PW, 335PI, 335PG, 1U-335PM, 1U-335PW, 1U-335PI, 1U-335PG

154

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Sentinel Radio Models $339-\mathrm{K}$ and $10339-\mathrm{K}$ Alignment Procedure

(A) Check tuning dial adjustment by tuning gang condenser until plates touch maximum capacity stop (completely in mesh) at which point the dial needle must be exactly even with the last line at the low frequency end of the dial calibration. If the dial needle does not point exactly to the last line move to correct position by holding dial needle shank at the point where it attaches to its drum while turning the drum on the gang condenser.
(B) Use an accurately calibrated test oscillator with some type of output measuring device.
(C) THE LOOP MAY BE LEFT IN THE CABINET and the chassis with its mounting board pulled out of the cabinet just far enough for adjustment of the trimmers, or the loop and chassis may be removed from the cabinet and the loop placed in the same position and plane it will be in when both are mounted in cabinet-approximately $1^{\prime \prime}$ space between receiver loop and chassis. Couple test oscillator to receiver loop by: (1) make loop consisting of 5 to 10 turns of No. 20 to No. 30 size wire, wound on a $2^{\prime \prime}$ or $3^{\prime \prime}$ form; (2) connect this loop across output of test oscillator; (3) place test oscillator loop near radio loop. BE SURE THAT NEITHER LOOP MOVES WHILE ALIGNING.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

HOW TO REMOVE CHASSIS FROM CABINET

1. Remove all knobs by pulling them forward.
2. Take off dial scale by pressing down on top center of plastic dial enclosure and at the same time pulling it forward.
3. Remove pointer by pulling it forward.
4. Remove cabinet back by taking out three serews and two clips. Note: Cabinet back has a power cord interlock which is automatically disconnected when back is removed.
5. Take out two chassis mounting screws at bottom of cabinet. Chassis may now be readily removed by sliding it out of cabinet.
6. When replacing cabinet bock be sure that it is parallel to loop and power cord interlock plug fits into socket on chassis.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Stewart-Warner Model 915l-A, Continued BROADCAST BAND-"AM'-ALIGNMENT PROCEDURE

1. If alignment af bath $A M$ and FM channels are required, it is advisable ta align the $A M$ chonnel first; then align the $F M$ channel as instructed an Page 159.
2. Remave chassis and laap antenna (which is mounted ta chassis) fram cabinet by fallawing pracedure autlined an Page 157. Allaw laap ta remain attached ta chassis.
3. In arder ta pravide a caupling far signal generatar during R.F. alignment as instructed in chart belaw, wind several turns af wire in a circular shape sa that it may be placed adjacent and parallel ta the laap.
4. Cannect an autput meter acrass the speaker vaice cail ar fram the
plate of the $50 B 5$ tube to chassis through a 0.1 Mfd . candenser.
5. Set band switch ta the " $A M^{\prime \prime}$ (caunter-clackwise) pasitian.
6. Set volume cantral at maximum and use a weak signol fram the signal generatar.
7. Since the dial scale is a part af the cabinet, when campletely as sembled, it becames nesessary ta pravide a temparary means af lacating the dial ta abtain colibratian paints. Ratate gang candenser fully caunter-clockwise and replace painter sa that it is parallel with base af the chassis. Now, hald dial scole in front af painter in such a pasitian that the ends of the indicatar point ta the " $A M$ " and "FM" markers. While halding the dial scale in this pasition, ratate puning sleeve until painter indicates desired frequency.

FIG. 1 Top View of Chassis

Bottom View of Chassis

FIG. 3 VTVM Connections for IF Alignment

FIG. 4
VTVM and Oscilloscope Connections for Discriminator Alignment

FIG. 2

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Stewart-Warner Model 9151-A, Continued FREQUENCY MODULATION_"'FM"-ALIGNMENT PROCEDURE

1. If alignment af both $A M$ and $F M$ channels are required it is advisable to align the $A M$ channel first as instructed in chart on Page $15 \mathcal{S}$. Then, accomplish FM channel alignment by using the procedure outlined in the chart below.
2. Remove chassis and laap antenna (which is mounted to chassis) from cabinet by follawing pracedure outlined on Page 157. Allow loop ta remain attached to chassis.
3. Discannect built-in FM lead fram "FM ANT." terminal at back of chassis.
4. Set band switch to the "FM" (middle) position.
5. Set volume control at maximum and use a weak signal from the signal generator.
6. Dress FM circuit leads as short and straight as possible, particularly those in the oscillator circuit. If plate and grid leads shauld also be kept short and straight.
7. Since the dial scale is a part of the cabinet, when completely assembled, it becomes necessary to provide a temporary means of locating the dial to obtain calibratian points. Rotate gang condenser fully counter-clockwise and replace pointer so that it is parallel with base of the chassis. Now, hold dial scale in frant af pointer in such a positian that the ends of the indicator point to the " $A M$ " and " $F M^{\prime \prime}$ markers. While holding the dial scale in this pasition, rotate tuning sleeve until painter indicates desired frequency.

Check calibration and tracking af receiver with input signals af 88 and 98 MC . If difference between dial painter setting and the abave mentianed frequencies daes nat exceed $\pm 0.3 \mathrm{MC}$. and RF circuit is tracking properly then alignment may be cansidered satisfactary and no further adiustment is necessory.
Where the calibratian error is greater than $\pm 0.3 \mathrm{MC}$. it is advisable ta make the following adjustments
Tune receiver to an 88 MC . signal and note whether dial pointer is abave ar belaw carrect calibratian paint. Then tune receiver so that dial pointer is at the 88 MC . pasitian. If generatar signal was previausly received at a setting oscillatar coil (\#T4 in Fig. 2) so that signal will naw be received at the correct
dial setting. On the ather hand, if generatar signal was received at a dial setting belaw 88 MC., then slightly campress the windings of the oscillatar cail until the signal cames in at the correct calibration point.
Check calibratian at 108 MC . and if it is in errar by more thon $\pm 0.3 \mathrm{MC}$., readjust setting of trimmer $\#$ 12, Repeat calibration adjustment at 88 and 108 MC . until desired accuracy is abrained,
ciable amaunt, then make a very slight adjustment in the spacing of an appreciable amaunt, then make a very slight adjustment in the spacing of the gang check adiustment of RF trimmer \#13 to abtain maximum outpus

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

STROMBERG-CARLSON SERVICE NOTES RADIO RECEIVER - MODEL 1500

ALIGNMENT PROCEDURE

CAUTION: As this is a transformless Receiver, observe all usual precautions. The Black-White $\operatorname{lB}-\mathbf{I}$ lead is common to one side of the 117 Volt Power Line Cord.

Pointer Selting		Generator Setting	Input and Dummy	VTVM and Scape Cannectian and Scale	Adj. and Nates
I. F. AdJUSTMENT					
	Low frequency end of dial	455 kc . 400 cy . mod.	Pin \#7, 12BE6 tube 0.01 mfd . dummy	-3V DC Scale Green. White (AVC) lead and Black-White ($\mathrm{C}-$) lead.	Adj. top and ballam cores of each I. F. Iransfarmer with nonmetailic screwdriver for maxi. mum valtage.
(2)	"	455 kc . Swept 15 kc.	"	Scope ta Junctian C-6 and Valume Control	Adi. same cares as above for best over-lapping curve on scape.

R. F. ADJUSTMENT

(1)	1650 kc. Condenser plates oll way out	$\begin{aligned} & 1650 \mathrm{kc} . \\ & 400 \mathrm{cy} . \bmod . \end{aligned}$	Ant. terminal 0.01 mfd . dummy	"	Adi. Osc. (front) trimmer on variable condenser lar maximum valtage.
(2)	1400 kc.	$\begin{aligned} & 1400 \mathrm{kc} . \\ & 400 \mathrm{cy} . \mathrm{mod} . \end{aligned}$	-	'	Adj. R. F. and loop trimmers on variable candenser for maximum vollage.

Measurements are mode at 117 V line, using electronic Voltmefer. Except where otherwise indicated, volages are D.C. and are poslitive with respect to the reference point which is the common Black-White leod.

TUBE COMPLEMENT

2 12BA6 Minioture RF and IF Amplifier
1 12BE6 Miniature Converter
1 I2AV6 Miniature Detector, AVC and Audia Driver
I 5016Gt Power Output
MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN UNITED MOTORS SERVICE

SERVICE INSTRUCTIONS • BUICK MODEL 980782

UNITED MOTORS SERVICE

(5 $\dot{\circ}$
0
0

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS
Western Auto, Truetone Models D2002, D2003 (5D127 -A)

Western Auto, Truetone Model D2004 (4Bll5 - Series A)

Western Auto, Truetone Models D2002, D2003 (5D127 -A)

ALIGNMENT PROCEDURE
ADUST FOR
MAXIMUM OUTPUT
Top and bottom

Cores in output
and input I.F. cans Oscillator trimmer
C1-D on gang

Check for
adequate rang
Antenna trimmer
$\mathrm{Ci}-\mathrm{C}$ on gang

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Wostinghouse Electric Corporation

Model H-198, Chassis V-2137-2

ALI GNMENT Broadcast Band

Connect an output meter across the speaker.voice coil.
While making the following adjustments, keep the volume control set for maximum output. the tone control set for maximum treble. and the signal generator output attenuated to avoid A.V.C. action.

MANUAL OF 1950 MOST Westinghouse Eloctric

Model H-199
Chassis V-2137-1
F.M. Alignment

Connect Signal
Step Generator to -

AM 05C. TRIM.-

1 Set the band switch to FM.
2 Connect two 100,000 ohm reaiators (the resistances must be equal within 5 percent) between pin $\# 7$ of the 6AL5 tube and around aa shown on the achematic diagram.

3	Connect a V.T.V.M. between	ta "X"	"Y" (s	sehematic diagram).
4	Stator of FM ant. aection (C52) on tuning capacitor through a . 01 mfdmica	10.7 mc .	maximum capacity	$\begin{aligned} & \text { Sec. of ratio det. trana. for } \\ & \text { zero (uaie medium strength } \\ & \text { signal) } \end{aligned}$

5	Connect the V.T.V.M. between point "Z" and ground.			
6	Same as atep	10.7 me .	maximum capacity	Pri. of ratio det trans. and pri. and sec. of 10.7 me . lat and 2nd I-F trans. for max.

NOTE: The pri. of the ratio det. trans. peaks in two places. Use the peak with the slug farthest out.

7 Reconnect the V.T.V.M. between points " X^{n} and " Y ", and increaae the signal strength 2 times. \qquad
10.7 mc .

| maximum |
| :--- | :--- |
| capacity |\quad| Recheck sec. of ratio det. |
| :--- |
| trans. for zero voltage |

9 Reconnect the V.T.V.M. between point "Z" and ground.

10	Same as atep 4	10.7 mc .	maximum cspacity	Pri. of ratio det. trans. for maximum roltage

11 Remove the two 100,000 ohm reaistora that were inserted in step 2.

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Wastinghouse Electric Corporation Models $\mathrm{H}-210$ and $\mathrm{H}-211$

Chassis V-2144 and V-2144-1

ALIGNMENT

While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

Step	Connect Signal Generator to	Signal Generator Frequency	Radio Dial Setting	Adjust
1.	Stator of R-F taning capacitor (C7) through a 0.1 mfd capacitor	455 kc.	maximum capacity	Pri. and sec. of lst and 2nd I-F tranaformers for max. output

NOTE: If the $I-F$ transformers are badly nis-aligned, it ay be inpossible to obtain sufficient output to use the above system. In this event, it vill be necessary to align each transformer separately. Start vith the last l-F transformer and mork formard, connecting the signal generator to the control grid of the tube preceding the transformer under alignment.

2.	Radiated signal (no actual connection)	1615 kc .	minimum capacity	Osc. trimmer (Cl0) for max. output		
3.	Radiated signal (no actual connection	1400 kc .	1400 kc .	Ant. t	er (C8) for	output
		- ANT. TMIM. 10-05c. Tmin.				

THE PHLOT LAMMP IS UBEO IN THE V-2I4A-1 CMABSIS IH-21HONLY. WIA IS USEO IN THE

173

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

$W_{\text {estinghouse }}$ Electric
 H-300T5 AND H-301T5

CHASSIS NO. V-2148

RLGNMENT

It is recommended that the chassis be isolated from the power line by means of an isolation transformer.

Make certain that the dial pointer is correctly positioned with respect to the dial scale.
While making the following ad,ustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

Step	Connect Signal Generator to -	Signal Generator Frequency	$\begin{gathered} \text { Radio } \\ \text { Dial } \end{gathered}$	Adjust for Maximum Output
1.	Stator of R-F tuning capacitor (C13) through a 200 mmf capacitor	455 kc .	minimum capacity	Top and bottom slugs in 2nd and lst $I-F$ trans. in order given*
2.	Same as step 1	1615 kc .	minimum capacity	Osc. trimmer (CI6)
3.	Radiated Signal	1400 kc .	1400 kc .	R-F trimmer (Cl5)

* It is recommended that a fiber aligning tool that snugly fits the slot in the powdered ron core be used to prevent chipping of the slot.

凧

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Westinghouse Electric Corporation

Models H-303P4 and H-304P4 Chassis V-2153

See page 177 for schematic.

Top View
ALIGNMENT
BROADCAST BAND
Connect an output meter across the speaker voice coil.
While making the following adjustments, keep the volume control set for maximum output, the tone control set for maximum treble, and the signal generator output attenuated to avoid A.V.C. action.

Step	Connect Signal Generator to-	Signal Generator Frequency	Radio Dial Setting	Adjust
1	Set the band switch to AM.			
2	Stator of tuning capacitor (C44) through a 0.1 mfd capacitor	455 kc.	maximum capacity	455 kc . pri, and sec. of 1st and 2nd I-F trans. for max. output

NOTE: If the I-F transformers are badly mis-aligned, it may be impossible to obtain sufficient output using the above system. In this event, it will be necessary to align each transformer separately. Start with the last I-F transformer and work forward, connecting the signal generator to the control grid of the tube preceding the transformer under alignment.

| 3 | Radiated signal (no actual
 connection) | 1600 kc. | 1600 kc. | AM osc. trimmer (C46) for max. output |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 4 | Radiated signal (no actual
 conncction) | 1400 kc. | tune to
 signal | AM ant. trimmer (C48) for max. output (rock-
 in adjustment) |

FM BAND
Do not align the FM circuits until all AM adjustments have been completed.

Step	Connect Signal Generator to-	Signal Generator Frequency	$\begin{aligned} & \text { Radio } \\ & \text { Dial } \\ & \text { Setting } \end{aligned}$	Adjust
1	Set the band switch to FM.			
2	Connect two $100,000 \mathrm{ohm}$ resistors (the resistances must be equal within 5 percent) between pin No. 7 of the 6AL5 tube and ground as shown on the schematic diagram.			
3				
4	Stator of FM ant. section (C43) on tuning capacitor through a .01 mfd mica capacitor	10.7 mc .	maximum capacity	Sec. of ratio det. trans. for zero (use medium strength signal)
5	Connect the V.T. V. M between point " Z " and ground.			
6	Samc as step 4	10.7 mc .	maximum capacity	Pri. of ratio det. trans. and pri. and sec. of 10.7 me. 1st and 2nd I-F trans. for max.
	The pri. of the ratio det. tr	peaks in t	laces. Use	the peak with the slug farthest out.
7	Reconncct the V.T.V.M. between points "X" and "Y", and increasc the signal strength 10 times.			
8	Same as step 4	10.7 mc .	maximum capacity	Recheck sec. of ratio det. trans. for zero voltage
9	Reconncct the V.T. V. M. between point " Z " and ground.			
10	Same as step 4	10.7 mc .	maximum capacity	Pri. of ratio det. trans. for maximum voltage
11	Remove the two 100,000 ohm resistors that were inserted in step 2.			
12	FM ant. terminal through a 300 ohm non-inductive resistor	105 mc .	105 mc .	FM osc. trimmer (C45) for maximum output
13	Same as step 12	105 mc .	105 mc .	FM ant trimmer (C47) for maximum output

178

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

Westinghouse Electric Corporation H-310T5, H-311T5, H-310T5U, AND H-31IT5U
 V-2161 AND V-2161U CHASSIS

ALIGNMENT

It is recommended that the chassis be isolated from the power line by means of an isolation transformer.

Make certain that the dial pointer is correctly positioned. When the gang is completely closed, the pointer should be over the small bump near the left end of the dial background.

While making the following adjustments, keep the volume control set for maximum output and the signal generator output attenuated to avoid AVC action.

Step	Connect Signal Generator to -	Signal Generator Frequency	Radio Dial	Adjust for Maximum Output-
1	Stator of R-F tuning capacitor (A) through a 0.1 mfd capacitor	455 kc.	Minimum capacity	Top and bottom slugs in 2nd and 1st I-F trans. in order given *
2	Same as step 1	$1615 \mathrm{kc}$.	Minimum capacity	Osc. trimmer (D)
3	Radiated Signal	$1400 \mathrm{kc}$.	$1400 \mathrm{kc}$.	Ant. trimmer (B)

$*$ It is recommended that a fiber aligning tool that snugly fits the slot in the powdered iron core be used to prevent chipping of the slot.

DIAL DRIVE

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

$W_{\text {ostinghouse }}$ Eloctric Corporation

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF $\square_{\bar{i}}^{\bar{i}}$ MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

MODELS G881, G882, G883, G884 \& G885
Zenith Radio CHASSIS 8G20
Model G844, Chassis 8G21 is similar, but less phono section.
is similar, $\stackrel{\overline{6}}{\square}$

$$
\begin{aligned}
& \text { I9TB } \\
& \text { DISCRIMINATOR DET. } \\
& \text { IST. AUDIO }
\end{aligned}
$$

Operation	Connect Oscillator To	Dummy Antenna	Input Signal Frequency	Band	Set Dial To	Adj. Trimmers	Purpose
1	Pin $212 \mathrm{AT7}$ Converter	. 05 Mfd .	455 Kc . Modulated	BC	600 Kc.	L9, 10, 13, 14	Align I F. channel for maximum output.
2	2 turns loosely cpld. to wavemagnet		$\begin{aligned} & 1600 \mathrm{Kc} . \\ & \text { Modulated } \end{aligned}$	BC	1600 Kc .	C4	Set oscillator to dial scale.
3	2 turns loosely cpld. to wavemagnet		1400 Kc . Modulated	BC	1400 Kc.	C 3, C2	Align detector and antenna stage.
4 (a)	Pin 1 (grid) on 12AU6 limiter.	. 05 Mfd .	10.7 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \\ & \hline \end{aligned}$		L16 coil slug Primary discr.	Align primary of discriminator for maximum reading.
5 (b)	Pin 1 (grid) on 12AU6 limiter.	. $05 \mathrm{Mfd}$.	10.7 Mc . Unmodulated	$\begin{aligned} & \mathrm{FM} \\ & 100 \\ & \hline \end{aligned}$		LI7 coil slug sec. of discr.	Adjust secondary of discriminator for zero reading.
6 (c)	Pin 1 (grid) on 12BA6 2nd. IF.	. $05 \mathrm{Mfd}$.	10.7 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \end{aligned}$		LI5 Prim. of 3rd. IF trans.	Align 3rd. IF transformer for maximum reading.
7 (c)	$\begin{aligned} & \text { Pin } 1 \text { (grid) on 12BA6 } \\ & \text { lst. IF. } \end{aligned}$. 05 Mfd .	10.7 Mc . Unmodulated	$\begin{aligned} & F M \\ & 100 \end{aligned}$	-	Lll and LIL Prim. and Sec. of $2 n d$. IF transformer.	Align 2nd IF transformer for maximum reading.
8 (c)	Pin 2 (grid) on 12AT7 converter tube socket.	. 05 Mfd .	10.7 Mc . Unmodulated	$\begin{aligned} & F M \\ & 100 \end{aligned}$		L7 and L8 Prim. and Sec. of lst. IF transformer.	Align lst. IF transformer for maximum reading.
9 (c)	Antenna Post FM (Re-	270 ohms	98 Mc . Unmodulated	$\begin{aligned} & \mathrm{FM} \\ & 100 \\ & \hline \end{aligned}$	98 Mc .	L5 Osc. Coil Slug.	Set Oscillator to dial scale.
10 (c) (d)	move line ant.)	270 ohms	98 Mc . Unmodulated	$\begin{aligned} & \text { FM } \\ & 100 \end{aligned}$	98 Mc .	L 3 Det. Coil Slug	Align det. stage to maximum reading.

ZENITH RADIO CORP.
Alignment instructions for Chassis 8G20, 8G21, used in Models G844, G881, G882, G883, G884, and G885.
Alignment of this chassis will in most cases be unnecessary
unless an IF or RF transformer is replaced or the adjustments
Correct alignment can only be made if the following procedure ohms in series with the hat lead will serve for FM adjustments. This lead should be shielded.
An AC output meter connected across the primary or secondary of the output transformer will be satisfactory for all AM adjustments.
The signal generator output should be kept just high enough to
(a) Vacuum Tube Voltmeter Lug 7 on discriminator transformer to chassis (half discriminator load).
(b) Vacuum Tube Voltmeter Lug 5 on discriminator transformer
to chassis (full discriminator load).
(c) Vacuum Tube Voltmeter from Limiter Grid to Chassis. (d) Loosen Slugs by applying a hot iron to the cement. Schematic diagram on previous page.
$\ldots \ldots$

MANUAL OF 1950 MOST-OFTEN-NEEDED RADIO DIAGRAMS

[^0]: .

[^1]: \dagger Use alternate loading.

[^2]: Items listed but without Stock Nos．are not stock items．

